精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABCA1B1C1中,AB AC,点EF分别在棱BB1CC1上(均异于端点),且∠ABEACFAEBB1AFCC1

求证:(1)平面AEF⊥平面BB1C1C

2BC //平面AEF

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1在三棱柱中, // 可推出再根据可证平面,从而可证平面平面;(2)根据 可证结合(1),可推出四边形是平行四边形,即可证明//平面

试题解析:证明:(1)在三棱柱中, //

又∵ 平面.

平面

又∵ 平面

∴平面平面

2)∵

又由(1)知,

∴四边形是平行四边形,从而

又∵ 平面 平面

//平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的一个极值点,求的最大值;

(2)若 ,都有 ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

Ⅰ)设,求函数的单调区间;

Ⅱ)若,函数,试判断是否存在,使得为函数的极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为曲线C上任意一点, 直线的斜率之积为

求曲线的轨迹方程;

Ⅱ)是否存在过点的直线与椭圆交于不同的两点,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据消费者心理学的研究,商品的销售件数与购买人数存在一定的关系,商家可以根据此调整相应的商品小手策略,以谋求商品更多销量,从而获取更多利润.某商场对购买人数和销售件数进行了统计对比,得到如下表格:

人数

10

15

20

25

30

35

40

件数

4

7

12

15

20

23

27

(参考公式:

1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图:

2)根据(1)中所绘制的散点图,可得出购买人数与商品销售件数存在怎样的关系?并求出回归直线方程;(结果保留到小数点后两位)

3)预测当进店人数为80人时,商品销售的件数.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于AB两点,已知AB的横坐标分别为

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,AE垂直于平面,点F为平面ABC内一点,记直线EF与平面BCE所成角为,直线EF与平面ABC所成角为

求证:平面ACE;

,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在圆内直径所对的圆周角是直角.此定理在椭圆内(以焦点在轴上的标准形式为例)可表述为“过椭圆的中心的直线交椭圆于两点,点是椭圆上异于的任意一点,当直线斜率存在时,它们之积为定值.”试求此定值;

(2)在圆内垂直于弦的直径平分弦.类比(1)将此定理推广至椭圆,不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某登山队在山脚处测得山顶的仰角为,沿倾斜角为(其中)的斜坡前进后到达处,休息后继续行驶到达山顶

1)求山的高度

2)现山顶处有一塔.从的登山途中,队员在点处测得塔的视角为.若点处高度,则为何值时,视角最大?

查看答案和解析>>

同步练习册答案