【题目】如图,在三棱柱ABCA1B1C1中,AB AC,点E,F分别在棱BB1,CC1上(均异于端点),且∠ABE∠ACF,AE⊥BB1,AF⊥CC1.
求证:(1)平面AEF⊥平面BB1C1C;
(2)BC //平面AEF.
科目:高中数学 来源: 题型:
【题目】已知点P为曲线C上任意一点, ,直线、的斜率之积为.
(Ⅰ)求曲线的轨迹方程;;
(Ⅱ)是否存在过点的直线与椭圆交于不同的两点、,使得?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据消费者心理学的研究,商品的销售件数与购买人数存在一定的关系,商家可以根据此调整相应的商品小手策略,以谋求商品更多销量,从而获取更多利润.某商场对购买人数和销售件数进行了统计对比,得到如下表格:
人数 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数 | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(参考公式:,)
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图:
(2)根据(1)中所绘制的散点图,可得出购买人数与商品销售件数存在怎样的关系?并求出回归直线方程;(结果保留到小数点后两位)
(3)预测当进店人数为80人时,商品销售的件数.(结果保留整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,AE垂直于平面,,,点F为平面ABC内一点,记直线EF与平面BCE所成角为,直线EF与平面ABC所成角为.
Ⅰ求证:平面ACE;
Ⅱ若,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在圆内直径所对的圆周角是直角.此定理在椭圆内(以焦点在轴上的标准形式为例)可表述为“过椭圆的中心的直线交椭圆于两点,点是椭圆上异于的任意一点,当直线,斜率存在时,它们之积为定值.”试求此定值;
(2)在圆内垂直于弦的直径平分弦.类比(1)将此定理推广至椭圆,不要求证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某登山队在山脚处测得山顶的仰角为,沿倾斜角为(其中)的斜坡前进后到达处,休息后继续行驶到达山顶.
(1)求山的高度;
(2)现山顶处有一塔.从到的登山途中,队员在点处测得塔的视角为.若点处高度为,则为何值时,视角最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com