精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2=4.直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2,则直线l的方程
y=(1±
6
2
)(x-1)+2
y=(1±
6
2
)(x-1)+2
分析:设直线l的斜率为k,根据直线l过P点,表示出直线l方程,利用点到直线的距离表示出圆心(0,0)到直线l的距离d,再由弦长与半径,利用勾股定理及垂径定理列出关于k的方程,求出方程的解得到k的值,即可确定出直线l的方程.
解答:解:设直线l的斜率为k,可得出直线l方程为y-2=k(x-1),即kx-y+2-k=0,
∴圆心(0,0)到直线l的距离d=
|2-k|
k2+1

∵|AB|=2,圆的半径r=2,
∴2=2
r2-d2
,即r2-d2=1,
∴4-
(k-2)2
k2+1
=1,
整理得:2k2-4k-1=0,
解得:k=
4±2
6
4
=1±
6
2

则直线l方程为y=(1±
6
2
)(x-1)+2.
故答案为:y=(1±
6
2
)(x-1)+2
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,勾股定理,以及直线的点斜式方程,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案