精英家教网 > 高中数学 > 题目详情
(2009•台州一模)已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an
(Ⅰ)求证:an+1=
n
n+2
an

(Ⅱ)记bn=lnSn,Tn为{bn}的前n项和,求e-Tn-n的值.
分析:(Ⅰ)由Sn=n2an①,得Sn+1=(n+1)2an+1②,②-①后整理可得结论;
(Ⅱ)利用累积法求出an,从而得到Sn,进而求得bn,Tn,利用对数恒等式可得答案;
解答:解:(Ⅰ)由Sn=n2an①,得Sn+1=(n+1)2an+1②,
②-①得:an+1=(n+1)2an+1-n2an
整理得,an+1=
n
n+2
an

(Ⅱ)由an+1=
n
n+2
an
,得
an+1
an
=
n
n+2

所以an=a1×
a2
a1
×
a3
a2
×…×
an
an-1

=
1
2
×
1
3
×
2
4
×…×
n-2
n
×
n-1
n+1

=
1
n(n+1)
(n≥2),
又当n=1时,a1=
1
2
,所以an=
1
n(n+1)

Sn=n2an=
n
n+1
,bn=lnSn=lnn-ln(n+1),
∴Tn=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+…+(lnn-ln(n+1))=-ln(n+1),
e-Tn-n=eln(n+1)-n=1
点评:本题考查由数列递推公式求数列通项、数列求和,考查学生逻辑推理能力、运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•台州一模)已知向量
a
=(sinx,1),
b
=(t,x),若函数f(x)=
a
b
在区间[0,
π
2
]上是增函数,则实数t的取值范围是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州一模)已知点(3,1)和原点(0,0)在直线3x-ay+1=0的两侧,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州一模)已知z1=2+i,z2=1-3i,则复数
i+z2z1
的虚部为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州一模)根据右边程序框图,若输出y的值是4,则输入的实数x=
-2或1
-2或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州一模)已知点B(0,t),点C(0,t-4)(其中0<t<4),直线PB、PC都是圆M:(x-1)2+y2=1的切线.
(Ⅰ)若△PBC面积等于6,求过点P的抛物线y2=2px(p>0)的方程;
(Ⅱ)若点P在y轴右边,求△PBC面积的最小值.

查看答案和解析>>

同步练习册答案