给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
(1)椭圆方程,伴随圆方程;(2);(3)存在,.
【解析】
试题分析:(1)这是基本题,题设实质已知,要求椭圆标准方程,已知圆心及半径求圆的方程;(2)为了求点坐标,我们可设直线方程为,直线与椭圆只有一个公共点,即直线的方程与椭圆的方程联立方程组,这个方程组只有一个解,消元后利用可得的一个方程,又直线截圆所得弦长为,又得一个关于的方程,联立可解得;(3)这是解析几何中的存在性问题,解决方法都是假设存在,然后去求出这个,能求出就说明存在,不能求出就说明不存在.解法如下,写出过点的直线方程,求出圆心到这条直线的距离为,可见当圆半径不小于3时,圆上的点到这条直线的最短距离为0,即当时,,但由于,无解,当圆半径小于3时,圆上的点到这条直线的最短距离为,由此得,又有,可解得,故存在.
(1)由题意:,则,所以椭圆的方程为, 2分
其“伴随圆”的方程为. 4分
(2)设直线的方程为
由得 6分
则有得, ① 7分
由直线截椭圆的“伴随圆”所得弦长为,可得
,得 ② 8分
由①②得,又,故,所以点坐标为. 9分
(3)过的直线的方程为:,
即,得 11分
由于圆心到直线的距离为
, 13分
当时,,但,所以,等式不能成立;
当时,,
由得所以
因为,所以,
得.所以 15分
考点:椭圆方程,直线与椭圆位置关系
科目:高中数学 来源:2013-2014学年江苏省高考模拟考试理科数学试卷(解析版) 题型:填空题
已知椭圆的中心在坐标原点O, A,C分别是椭圆的上下顶点,B是椭圆的左顶点,F是椭圆的左焦点,直线AF与BC相交于点D。若椭圆的离心率为,则∠BDF的正切值
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高考模拟考试文科数学试卷(解析版) 题型:填空题
若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的体积为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省南通市高三年级第三次模拟考试文科数学试卷(解析版) 题型:解答题
各项均为正数的数列{an}中,设,,且,.
(1)设,证明数列{bn}是等比数列;
(2)设,求集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com