16£®ÒÔÏÂÃüÌâÖУº
¢Ùp¡ÅqΪÕæÃüÌ⣬ÔòpÓëq¾ùΪÕæÃüÌ⣻
¢Ú${¡Ò}_{0}^{\frac{¦Ð}{2}}$sin2$\frac{x}{2}$dx=$\frac{¦Ð}{4}$-$\frac{1}{2}$£»
¢Û£¨a+b+c£©9Õ¹¿ªÊ½ÖÐa4b3c2µÄϵÊýΪ1260£»
¢ÜÒÑÖªº¯Êýf£¨x£©=-x-x3£®x1£¬x2£¬x3¡ÊR£®ÇÒx1+x2£¾0£¬x2+x3£¾0£¬x3+x1£¾0£®Ôòf£¨x1£©+f£¨x2£©+f£¨x3£©µÄÖµºãΪ¸º£»
¢Ý¡°a=1¡±ÊÇ¡°Ö±Ïßl1£ºax+2y-1=0ÓëÖ±Ïßl2£ºx+£¨a+1£©y+4=0¡°µÄ³ä·ÖÌõ¼þ£®
ÆäÖÐÊÇÕæÃüÌâµÄÊǢڢۢܢݣ¨ÌîÐòºÅ£©

·ÖÎö Óɸ´ºÏÃüÌâµÄÕæ¼ÙÅж¨ÅжϢ٣»Ö±½ÓÇó³ö¶¨»ý·ÖÅжϢڣ»°Ñ£¨a+b+c£©9¿´³É9¸öÒòʽ£¨a+b+c£©µÄ³Ë»ýÐÎʽ£¬Çó³öµÃµ½a4µÄ·½·¨Êý¡¢µÃµ½b3 µÄ·½·¨Êý¡¢µÃµ½c2µÄ·½·¨Êý£¬°ÑÕâЩ·½·¨ÊýÏà³Ë£¬¼´µÃº¬a4b3c2µÄÏîµÄϵÊýÅжϢۣ»ÀûÓú¯Êýf£¨x£©=-x-x3£¬µ¥µ÷ÐÔºÍÆæżÐÔ¼´¿ÉÅжϢܣ»ÀûÓÃÁ½Ö±ÏßƽÐеijäÒªÌõ¼þÁÐʽÇó³öaÖµÅжϢݣ®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬p¡ÅqΪÕæÃüÌ⣬ÔòpÓëqÖÁÉÙÒ»¸öΪÕæÃüÌ⣬¹Ê¢ÙÊǼÙÃüÌ⣻
¶ÔÓÚ¢Ú£¬${¡Ò}_{0}^{\frac{¦Ð}{2}}$sin2$\frac{x}{2}$dx=${¡Ò}_{0}^{\frac{¦Ð}{2}}£¨\frac{1}{2}-\frac{1}{2}cosx£©dx$=$£¨\frac{x}{2}-\frac{1}{2}sinx£©{|}_{0}^{\frac{¦Ð}{2}}$=$\frac{¦Ð}{4}$-$\frac{1}{2}$£¬¹Ê¢ÚÊÇÕæÃüÌ⣻
¶ÔÓÚ¢Û£¬°Ñ£¨a+b+c£©9¿´³É9¸öÒòʽ£¨a+b+c£©µÄ³Ë»ýÐÎʽ£¬´ÓÕâ9¸öÒòʽÖУ¬Ìô³ö4¸öÒòʽµÃµ½a4£¬·½·¨ÓÐ${C}_{9}^{4}$ÖÖ£»
ÔÙ´ÓÊ£ÓàµÄ5¸öÒòʽÖÐÌô³ö3¸öÒòʽ£¬µÃµ½b£¬·½·¨ÓÐ${C}_{5}^{3}$ÖÖ£»ÆäÓàµÄ2¸öÒòʽµÃµ½c2£¬·½·¨ÓÐ1ÖÖ£¬×îºó»áµÃµ½º¬a4b3c2Ï
¸ù¾Ý·Ö²½¼ÆÊýÔ­Àí£¬º¬a4b3c2µÄÏîµÄϵÊýÊÇ${C}_{9}^{4}•{C}_{5}^{3}$=1260£¬¼´£¨a+b+c£©9Õ¹¿ªÊ½ÖÐa4b3c2µÄϵÊýΪ1260£¬¹Ê¢ÛÊÇÕæÃüÌ⣻
¶ÔÓڢܣ¬º¯Êýf£¨-x£©=x+x3=-f£¨x£©£¬¡àº¯ÊýΪÆ溯Êý£®ÇÒÊǼõº¯Êý£¬
ÓÉx1+x2£¬£¾0£¬x2+x3£¾0£¬x3+x1£¾0£¬µÃx1£¾-x2£¬x2£¾-x3£¬x3£¾-x1£¬
¡àf£¨x1£©£¼f£¨-x2£©=-f£¨x2£©£¬f£¨x2£©£¼f£¨-x3£©=-f£¨x3£©£¬f£¨x3£©£¼f£¨-x1£©=-f£¨x1£©£¬
¡à2[f£¨x1£©+f£¨x2£©+f£¨x3£©]£¼0£¬¼´f£¨x1£©+f£¨x2£©+f£¨x3£©£¼0£®Ôòf£¨x1£©+f£¨x2£©+f£¨x3£©µÄÖµºãΪ¸º£¬¹Ê¢ÜÊÇÕæÃüÌ⣻
¶ÔÓڢݣ¬ÓÉ$\left\{\begin{array}{l}{a£¨a+1£©-2=0}\\{4a+1¡Ù0}\end{array}\right.$£¬½âµÃa=1»òa=-2£¬¡à¡°a=1¡±ÊÇ¡°Ö±Ïßl1£ºax+2y-1=0ÓëÖ±Ïßl2£ºx+£¨a+1£©y+4=0¡±Æ½Ðеijä·ÖÌõ¼þ£¬¹Ê¢ÝÊÇÕæÃüÌ⣮
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü¢Ý£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁ˸´ºÏÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÁ˶¨»ý·ÖµÄÇ󷨣¬ÑµÁ·ÁËÅÅÁÐ×éºÏ¼°¶þÏîʽ¶¨ÀíµÄÓ¦Ó㬿¼²éº¯ÊýµÄµ¥µ÷ÐÔºÍÆæżÐÔµÄÐÔÖÊ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1+a2+¡­+an=2n-1£¬Ôòan=2n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÇóÖµ£º${£¨lg2£©^2}+lg5•lg20+{£¨\sqrt{2014}-2£©^0}+{0.064^{-\frac{2}{3}}}¡Á{£¨\frac{1}{4}£©^{-2}}$=102£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªMΪÈý½ÇÐÎABCÄÚÒ»µã£¬ÇÒÂú×ã2$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$£¬Èô¡ÏAMB=$\frac{3¦Ð}{4}$£¬¡ÏAMC=$\frac{2¦Ð}{3}$£¬|$\overrightarrow{MB}$|=2$\sqrt{3}$£¬Ôò|$\overrightarrow{MC}$|=2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÕýËÄÀą̂µÄ²àÀⳤΪ3cm£¬Á½µ×Ãæ±ß³¤·Ö±ðΪ2cmºÍ4cm£¬Ôò¸ÃËÄÀą̂µÄÌå»ýΪ$\frac{28\sqrt{7}}{3}$cm3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÊýÁÐ{an}ÖУ¬a1=8£¬a4=2ÇÒÂú×ãan+2=2an+1-an£¨n¡ÊN+£©
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèSn=|a1|+|a2|+¡­+|an|£¬ÇóSn£®
£¨3£©Éèbn=$\frac{n+1}{£¨n+2£©^{2}£¨10-{a}_{n}£©^{2}}$£¨n¡ÊN+£©£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬Ö¤Ã÷£º¶ÔÓÚÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐTn£¼$\frac{5}{64}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô²»ÖغϵÄÈýÌõÖ±ÏßÏཻÓÚÒ»µã£¬ÔòËüÃÇ×î¶àÄÜÈ·¶¨3¸öƽÃ森

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª½Ç¦ÁµÄÖÕ±ßÔÚÈçͼËùʾµÄÒõÓ°ÇøÓòÄÚ£®
£¨1£©Óû¡¶ÈÖƱíʾ½Ç¦ÁµÄ¼¯ºÏ£»
£¨2£©Åж¨$\frac{¦Á}{2}$+$\frac{7¦Ð}{12}$Êǵڼ¸ÏóÏ޽ǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èôx£¾0£¬y£¾0£¬ÇÒx+y£¾2£¬
£¨1£©$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=3}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=\sqrt{2}}\end{array}\right.$ʱ£¬·Ö±ð±È½Ï$\frac{1+y}{x}$ºÍ$\frac{1+x}{y}$Óë2µÄ´óС¹Øϵ£»
£¨2£©ÒÀ¾Ý£¨1£©µÃ³öµÄ½áÂÛ£¬¹éÄÉÌá³öÒ»¸öÂú×ãÌõ¼þx¡¢y¶¼³ÉÁ¢µÄÃüÌâ²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸