精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x反函数为f-1(x),若f-1(m)+f-1(n)=2,则数学公式的最小值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    1
  4. D.
    2
C
分析:本题考查反函数的概念、反函数的求法、指数式和对数式的互化、对数的运算、由基本不等式 求最值等相关知识.根据y=2x可得f-1(x)的解析式,由此代入f-1(m)+f-1(n)=2可得a、b的关系式,根据基本不等式 即可得到 最小值.
解答:由y=2x解得:x=log2y
∴函数f(x)=2x的反函数为f-1(x)=log2x,x>0
由f-1(m)+f-1(n)=2得:log2m+log2n=2
即:log2mn=2
∴mn=4

的最小值为1
故选C.
点评:本题小巧灵活,用到的知识比较丰富,具有综合性特点,涉及了反函数、指数式和对数式的互化、对数的运算、由基本不等式 求最值等多方面的知识,是这些内容的有机融合,思维密度较大;解题中用注意对数的运算公式化简log2a+log2b=4得a、b的关系式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案