【题目】在平面直角坐标系xOy中,已知圆C:和点,,若在圆C上存在点P,使得,则半径r的取值范围是______.
【答案】
【解析】
点A(0,),B(0,),求出点P的轨迹方程,使得∠APB=60°,通过两个圆的位置关系转化成求解半径r的取值范围.
在平面直角坐标系xOy中,点A(0,),B(0,),使得∠APB=60°,
可知P在以AB为弦的一个圆上,圆的圆心在AB的中垂线即x轴上,半径为:2,由垂径定理可得圆心到y轴的距离为1,所以圆心坐标为(-1,0)或(1,0)
则P的方程为:(x﹣1)2+y2=22,
或:(x+1)2+y2=22,
已知圆C:(x﹣3)2+(y﹣4)2=r2,若在圆C上存在点P,使得∠APB=60°,
就是两个圆有公共点,可得:r+2,并且解得r∈[2,42].
故答案为:[2,42].
科目:高中数学 来源: 题型:
【题目】已知圆和抛物线,圆与抛物线的准线交于、两点,的面积为,其中是的焦点.
(1)求抛物线的方程;
(2)不过原点的动直线交该抛物线于,两点,且满足,设点为圆上任意一动点,求当动点到直线的距离最大时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然对数的底数).
(1)若f(x)是(0,+∞)上的单调递增函数,求实数a的取值范围;
(2)当a∈时,证明:函数f(x)有最小值,并求函数f(x)的最小值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A. 3 B. 2
C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】光对物体的照度与光的强度成正比,比例系数为,与光源距离的平方成反比,比例系数为均为正常数如图,强度分别为8,1的两个光源A,B之间的距离为10,物体P在连结两光源的线段AB上不含A,若物体P到光源A的距离为x.
试将物体P受到A,B两光源的总照度y表示为x的函数,并指明其定义域;
当物体P在线段AB上何处时,可使物体P受到A,B两光源的总照度最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=x2-a|x-1|-1,a∈R.
(1)判断并证明函数f(x)的奇偶性;
(2)若f(x)≥0对x∈[1,+∞)恒成立,求a的取值范围;
(3)写出f(x)在[-2,2]上的最大值g(a).(不需要解答过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,右顶点为,.
(1)求的方程;
(2)过点且与轴不重合的直线与交于,两点,直线,分别与直线交于,两点,且以为直径的圆过点.
(ⅰ)求的方程;
(ⅱ)记,的面积分别为,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(x)=f(2-x),且f(1)=6,f(3)=2.若不等式f(x)>2mx+1在[-1,3]恒成立,则实数m的取值范围是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com