精英家教网 > 高中数学 > 题目详情

【题目】某公司拟购买一块地皮建休闲公园,如图,从公园入口沿方向修建两条小路,休息亭与入口的距离为米(其中为正常数),过修建一条笔直的鹅卵石健身步行带,步行带交两条小路于处,已知

(1)设米,米,求关于的函数关系式及定义域;

(2)试确定的位置,使三条路围成的三角形地皮购价最低.

【答案】(1) ,定义域为 (2)见解析

【解析】

(1)法一:由,进而得,得y关于x的函数关系即可;法二:由,设中,由正弦定理结合,求得y关于x的函数关系即可;(2) 设三条路围成地皮购价为元,地皮购价为元/平方米,则为常数),利用换元法结合基本不等式求=最小值即可

(1)法一:由

由题可知

所以

所以

得定义域为

法二: 由

中,由正弦定理

所以

同理可得

整理得

得定义域为

(2)设三条路围成地皮购价为元,地皮购价为元/平方米,则为常数),

所以要使最小,只要使最小

由题可知

定义域为

当且仅当时取等号

所以,当时,最小,所以最小,此时y=

答:当点距离点 米,F距离点米远时,三条路围成地皮购价最低

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从高三抽出名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:

1)这名学生成绩的众数与中位数;

2)这名学生的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究变量得到一组样本数据,进行回归分析,有以下结论

①残差平方和越小的模型,拟合的效果越好;

②用相关指数来刻画回归效果,越小说明拟合效果越好;

③线性回归方程对应的直线至少经过其样本数据点中的一个点;

④若变量之间的相关系数为,则变量之间的负相关很强.

以上正确说法的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点和到直线的距离之比为,设动点的轨迹为曲线,过点作垂直于轴的直线与曲线相交于两点,直线与曲线交于两点,与相交于一点(交点位于线段上,且与不重合).

(1)求曲线的方程;

(2)当直线与圆相切时,四边形的面积是否有最大值?若有,求出其最大值及对应的直线的方程;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数(其中为自变量,为常数).

(Ⅰ)若当时,函数的最小值为-1,求实数的值;

(Ⅱ)设全集,已知集合,若集合满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

(1)讨论函数的单调性,并写出相应的单调区间;

(2)已知,若对任意都成立,求的最大值;

(3)设,若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的角所对的边份别为,且

1求角的大小;

2,求的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,函数的极大值为,求实数的值;

(2)若对任意的上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案