分析 若函数f(x)=$\frac{1}{2}$x2-ax+4lnx在($\frac{1}{2}$,+∞)是单调递增的,则当x∈($\frac{1}{2}$,+∞)时,f′(x)=x-a+$\frac{4}{x}$≥0恒成立,解得a的取值范围.
解答 解:∵函数f(x)=$\frac{1}{2}$x2-ax+4lnx在($\frac{1}{2}$,+∞)是单调递增的,
∴当x∈($\frac{1}{2}$,+∞)时,
f′(x)=x-a+$\frac{4}{x}$≥0恒成立,即
a≤x+$\frac{4}{x}$在x∈($\frac{1}{2}$,+∞)时恒成立,
由x+$\frac{4}{x}$在x=2时,取最小值4,
故a≤4,
故答案为:a≤4.
点评 本题考查的知识点是函数单调性的性质,熟练掌握导数法确定函数单调性的方法和步骤是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 3 | C. | 2015 | D. | -4028 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 向右平移$\frac{π}{6}$个单位长度,再把所得各点的横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变 | |
B. | 向右平移$\frac{π}{6}$个单位长度,再把所得各点的横坐标变为原来的2倍;纵坐标不变 | |
C. | 向左平移$\frac{π}{3}$个单位长度,再把得所各点的横坐标变为原来的$\frac{1}{2}$倍;纵坐标不变 | |
D. | 向左平移$\frac{π}{3}$个单位长度,再把所得各点的横坐标变为原来的2倍,纵坐标不变 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com