精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是

1)求曲线C直角坐标方程;

2)射线与曲线C相交于点,直线t为参数)与曲线C相交于点DE,求

【答案】1;(2.

【解析】

1)将代入曲线C的极坐标方程,即得其直角坐标方程;

2)曲线C的极坐标方程与射线的方程联立,利用极径的几何意义和韦达定理求得,将直线的参数方程代入曲线的直角坐标方程,利用直线参数的几何意义和韦达定理求得,进而得解.

解:(1)将代入方程

所以,曲线C的直线坐标方程是,即

2)设,在方程中,令

设点DE在直线l中对应该的参数分别是,将代入方程并化简,得

同上可得,

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等。问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列。问五人各得多少钱?”(“钱”是古代的一种重量单位)。这个问题中,戊所得为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,EF中点,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是(

A.平面B.异面直线所成的角为90°

C.异面直线所成的角为60°D.直线与平面所成的角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情的控制需要根据大数据进行分析,并有针对性的采取措施.下图是甲、乙两个省份从27日到213日一周内的新增新冠肺炎确诊人数的折线图.根据图中甲、乙两省的数字特征进行比对,下列说法错误的是(

A.27日到213日甲省的平均新增新冠肺炎确诊人数低于乙省

B.27日到213日甲省的单日新增新冠肺炎确诊人数最大值小于乙省

C.27日到213日乙省相对甲省的新增新冠甲省肺炎确诊人数的波动大

D.后四日(210日至13日)乙省每日新增新冠肺炎确诊人数均比甲省多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产了一批零件,从中随机抽取100个作为样本,测出它们的长度(单位:厘米),按数据分成5组,得到如图所示的频率分布直方图.以这100个零件的长度在各组的频率代替整批零件长度在该组的概率.

1)估计该工厂生产的这批零件长度的平均值(同一组中的每个数据用该组区间的中点值代替);

2)若用分层抽样的方式从第1组和第5组中抽取5个零件,再从这5个零件中随机抽取2个,求抽取的零件中恰有1个是第1组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线,过点的直线交抛物线于两点.垂直于轴时,的面积为.

0

1)求抛物线的方程:

2)设线段的垂直平分线交轴于点.

①证明:为定值:

②若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为4,点 分别为 的中点,将 ,分别沿 折起,使 两点重合于点,连接.

(1)求证: 平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,左,右焦点分别为的面积为,直线的斜率为.为坐标原点.

1)求椭圆的方程;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

同步练习册答案