(08年扬州中学) 如果有穷数列(为正整数)满足条件,,…,,即(),我们称其为“对称数列”.例如,由组合数组成的数列就是“对称数列”.
(1)设是项数为7的“对称数列”,其中是等差数列,且,.依次写出的每一项;
(2)设是项数为(正整数)的“对称数列”,其中是首项为,公差为的等差数列.记各项的和为.当为何值时,取得最大值?并求出的最大值;
(3)对于确定的正整数,写出所有项数不超过的“对称数列”,使得依次是该数列中连续的项;当时,求其中一个“对称数列”前项的和
科目:高中数学 来源: 题型:
(08年扬州中学) 已知数列,中,,且是函数
的一个极值点.
(1)求数列的通项公式;
(2) 若点的坐标为(1,)(,过函数图像上的点 的切线始终与平行(O 为原点),求证:当 时,不等式
对任意都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年扬州中学) (16分)
用表示数列从第项到第项(共项)之和.
(1)在递增数列中,与是关于的方程(为正整数)的两个根.求的通项公式并证明是等差数列;
(2)对(1)中的数列,判断数列,,,…,的类型;
(3)对一般的首项为,公差为的等差数列,提出与(2)类似的问题,你可以得到怎样的结论,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com