【题目】如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】(12分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=12.
(1)求数列{an}的通项公式;
(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+a)(a>0且a≠1)的图象过点(﹣1,0),g(x)=f(x)+f(﹣x).
(Ⅰ)求函数g(x)的定义域;
(Ⅱ)写出函数g(x)的单调区间,并求g(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体ABCD﹣A'B'C'D'棱长为2,并且E,F分别是棱AA',CC'的中点.
(Ⅰ)求证:平面BED'F⊥平面BB'D'D;
(Ⅱ)求直线A'B'与平面BED'F所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
分组 | 频数 | 频率 |
[0,1) | 10 | 0.10 |
[1,2) | 0.20 | |
[2,3) | 30 | 0.30 |
[3,4) | 20 | |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合计 | 100 | 1.00 |
(1)求右表中和的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=,b2-a2=c2.
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com