精英家教网 > 高中数学 > 题目详情
3.下列函数中,同时满足两个条件“①?x∈R,f($\frac{π}{12}+x$)+f($\frac{π}{12}-x$)=0;②当-$\frac{π}{6}$<x<$\frac{π}{3}$时,f′(x)>0”的一个函数是(  )
A.f(x)=sin(2x+$\frac{π}{6}$)B.f(x)=cos(2x+$\frac{π}{3}$)C.f(x)=sin(2x-$\frac{π}{6}$)D.f(x)=cos(2x-$\frac{π}{6}$)

分析 ①?x∈R,f($\frac{π}{12}+x$)+f($\frac{π}{12}-x$)=0,函数的对称中心为($\frac{π}{12}$,0);②当-$\frac{π}{6}$<x<$\frac{π}{3}$时,f′(x)>0,函数单调递增,结合选项,可得结论.

解答 解:①?x∈R,f($\frac{π}{12}+x$)+f($\frac{π}{12}-x$)=0,函数的对称中心为($\frac{π}{12}$,0);②当-$\frac{π}{6}$<x<$\frac{π}{3}$时,f′(x)>0,函数单调递增,
结合选项,可得C满足,
故选C.

点评 本题考查三角函数的对称性、单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax-1(a>0且a≠1)的图象过定点A,则点A为(  )
A.(0,-1)B.(0,1)C.(-1,1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=-x2+2x-af(x)(a∈R),x1,x2是两个任意实数且x1≠x2
(1)求函数f(x)的图象在x=0处的切线方程;
(2)若函数g(x)在R上是增函数,求a的取值范围;
(3)求证:$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin2xcos2φ+cos2xsin2φ(φ>0)的图象关于直线x=$\frac{π}{3}$对称,则φ 的最小值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,BC=2,AC-AB=1,△ABC的面积为$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{13}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)的值为(  )
A.2-mB.4C.2mD.-m+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在R上的偶函数f(x),当x≥0时,f(x)=x2-4x
(1)求f(-2)的值;
(2)当x<0时,求f(x)的解析式;
(3)设函数f(x)在[t-1,t+1](t>1)上的最大值为g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.不使用计算器,计算下列各题:
(1)${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$;
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{({-9.8})^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*.
(1)求数列{an},{bn}的通项an和bn
(2)求证:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$;
(3)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案