【题目】已知函数
(1)若关于的不等式的解集为,求的值;
(2)若对任意恒成立,求的取值范围.
【答案】(1);(2)
【解析】
(1) 不等式可化为,而解集为,可利用韦达定理或直接代入即可得到答案;
(2)法一:讨论和时,分离参数利用均值不等式即可得到取值范围;
法二:利用二次函数在上大于等于0恒成立,即可得到取值范围.
(1)法一:不等式可化为,其解集为,
由根与系数的关系可知,
解得,经检验时满足题意.
法二:由题意知,原不等式所对应的方程的两个实数根为和4,
将(或4)代入方程计算可得,经检验时满足题意.
(2)法一:由题意可知恒成立,
①若,则恒成立,符合题意。
②若,则恒成立,而,
当且仅当时取等号,所以,即.
故实数的取值范围为.
法二:二次函数的对称轴为.
① 若,即,函数在上单调递增,恒成立,
故;
②若,即,此时在上单调递减,在上单调递增,
由得.
故;
③若,即,此时函数在上单调递减,
由得,与矛盾,故不存在.
综上所述,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮,的视角为30°.
(1)求观测站到港口的距离;
(2)求海轮的航行速度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:
做不到 | 能做到 | |
高年级 | 45 | 10 |
低年级 | 30 | 15 |
则下列结论正确的是( )
附参照表:
0.10 | 0.025 | 0.01 | |
2.706 | 5.024 | 6.635 |
参考公式:,其中
A. 在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”
B. 在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”
C. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”
D. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知命题:实数满足,命题:实数满足方程表示的焦点在轴上的椭圆,且是的充分不必要条件,求实数的取值范围;
(2)设命题:关于的不等式的解集是;:函数的定义域为.若是真命题,是假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形中,分别是的中点将分别沿折起,使重合于点.则下列结论正确的是( )
A.
B. 平面
C. 二面角的余弦值为
D. 点在平面上的投影是的外心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比及假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为及,不考虑其它因素的影响.
(1)用表示,并求实数使是等比数列;
(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com