精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若对任意的a∈(﹣3,+∞),关于x的方程f(x)=kx都有3个不同的根,则k等于(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:∵对任意的a∈(﹣3,+∞),关于x的方程f(x)=kx都有3个不同的根,
∴不妨设a=0,
则x≤0时,f(x)=
若0<x≤1,则﹣1<x﹣1≤0,则f(x)=f(x﹣1)+1=
若1<x≤2,则0<x﹣1≤1,则f(x)=f(x﹣1)+1=
若2<x≤3,则1<x﹣1≤2,则f(x)=f(x﹣1)+1=
若3<x≤4,则2<x﹣1≤3,则f(x)=f(x﹣1)+1=

作出f(x)的图象如图:
当k=1时,f(x)与y=x只有一个交点,不满足条件,
当k=2时,f(x)与y=2x有四个交点,不满足条件,
当k=3时,f(x)与y=3x有三个交点,满足条件,
当k=4时,f(x)与y=4x只有两个交点,不满足条件,
故k=3,
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数 ,则(
A.最大值为1,最小值为

B.最大值为1,无最小值
C.最小值为 ,无最大值
D.既无最大值也无最小值查看解析

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,△ABE为等腰直角三角形,∠BAE=90°,且AD⊥AE.

(1)证明:平面AEC⊥平面BED.
(2)求直线EC与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点上的点,满足

(1)当在圆上运动时,求点的轨迹方程;

(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为.

(1)若对任意的 组成公差为4的等差数列,且,求

(2)若数列是公比为)的等比数列, 为常数,

求证:数列为等比数列的充要条件为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.

(1)已知函数,试判断是否为“类函数”?并说明理由;

(2)设是定义在上的“类函数”,求是实数的最小值;

(3)若 为其定义域上的“类函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C:y2=2x的准线方程是 , 经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M为△ABC的中线AD的中点,过点M的直线分别交两边AB、AC于点P、Q,设
=x ,记y=f(x).

(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,x∈[0,1].若对任意x1∈[ ,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

同步练习册答案