精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).
(1)求$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.

分析 (1)根据对数的运算性质,可得lnx1=-lnx2,进而得到x1x2=1,进而得到$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)不妨令x2>1,则x1+x2+f(x1)+f(x2)=$\frac{1}{{x}_{2}}$+x2+2lnx2>M恒成立,令g(x)=$\frac{1}{x}$+x+2lnx,x>1,可得答案

解答 解:(1)∵函数f(x)=|lnx|,x1≠x2且f(x1)=f(x2).
∴lnx1=-lnx2,即lnx1+lnx2=ln(x1•x2)=0,
即x1x2=1,
∴$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$=0
(2)不妨令x2>1,
则x1+x2+f(x1)+f(x2)=$\frac{1}{{x}_{2}}$+x2+2lnx2>M恒成立,
令g(x)=$\frac{1}{x}$+x+2lnx,x>1,
则g′(x)=-$\frac{1}{{x}^{2}}$+1+$\frac{2}{x}$=$\frac{{x}^{2}+2x-1}{{x}^{2}}$>0恒成立,
则g(x)在(1,+∞)上恒成立,
由g(1)=2,可得M≤2,
即M的最大值为2

点评 本题考查的知识点是函数恒成立问题,对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若$cos(\frac{π}{2}-α)=\frac{1}{3}$,$\frac{π}{2}<α<π$,则sin2α=(  )
A.$-\frac{{2\sqrt{2}}}{9}$B.$-\frac{{2\sqrt{2}}}{3}$C.$-\frac{{4\sqrt{2}}}{9}$D.$-\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的$\frac{1}{n}$(n∈N*).已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的$\frac{3}{5}$,请从这个实事中提炼出一个不等式组是$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式|x+3|-2x-1<0的解集为(x0,+∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x-m|+|x+$\frac{1}{m}$|-x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线上存在点P,使得P到两个焦点的距离之比为2:1,则称此双曲线存在“L点”,下列双曲线中存在“L点”的是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知无穷数列{cn}满足cn+1=|1-|1-2cn||.
(Ⅰ)若c1=$\frac{1}{7}$,写出数列{cn}的前4项;
(Ⅱ)对于任意0<c1≤1,是否存在实数M,使数列{cn}中的所有项均不大于M?若存在,求M的最小值;若不存在,请说明理由;
(Ⅲ)当c1为有理数,且c1≥0时,若数列{cn}自某项后是周期数列,写出c1的最大值.(直接写出结果,无需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知O为原点,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的点P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为2,则此双曲线的渐近线方程为(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一次函数y=-$\frac{m}{n}$x+$\frac{1}{n}$的图象同时经过第一、二、四象限的必要不充分条件是(  )
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sin(π+α)=$\frac{1}{2}$,则cos(α-$\frac{3}{2}$π)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案