精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)当时,若函数存在与直线平行的切线,求实数的取值范围;

(2)当时,,若的最小值是,求的最小值.

【答案】(1);(2)的最小值为.

【解析】

(1)求出导函数,则有实数解,由此可得的范围;

(2)考虑到的表达式,题意说明上恒成立,且“=”可取,这样问题又可转化为即恒成立,且可取.,即的最小值是0.,为求的零点,由再由导数求得的最小值是.由于题中要求的最小值,因此研究的正负,从而得的最小值,可证得此最小值,且为0只有一解,这样得出结论.

(1)因为,因为函数存在与直线平行的切线,所以

上有解,上有解,所以,得,

故所求实数的取值范围是.

(2)由题意得:对任意恒成立,且可取,即恒成立,且可取.

,即

,由,令

.

时,

上,

上,.所以.

上递减,所以,故方程有唯一解,

综上,当满足的最小值为,故的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

I)应收集多少位男生样本数据?

II)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:,试估计该校学生每周平均体育运动时间超过4个小时的概率;

(Ⅲ)在样本数据中,有165位男生的每周平均体育运动时间超过4个小时请完成每周平均体育运动时间与性别的列联表,并判断是否有%的把握认为该校学生的每周平均体育运动时间与性别有关”.

男生

女士

总计

每周平均体育运动时

间不超过4小时

每周平均体育运动时

间超过4小时

总计

附:

0.10

0.05

0.010

0.005

k

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对任意a,恒有,且当时,有

求证:在R上为增函数;

若关于x的不等式对于任意恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:(1)正方形的四条边相等;(2)有两个角是的三角形是等腰直角三角形;(3)正数的平方根不等于0;(4)至少有一个正整数是偶数;是全称量词命题的有________;是存在量词命题的有________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当函数上的最大值为3时,求的值;

(2)在(1)的条件下,若对任意的,函数的图像与直线有且仅有两个不同的交点,试确定的值.并求函数上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),其中为直线的倾斜角.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】IT从业者绘制了他在26岁~35(2009年~2018)之间各年的月平均收入(单位:千元)的散点图:

1)由散点图知,可用回归模型拟合的关系,试根据附注提供的有关数据建立关于的回归方程

2)若把月收入不低于2万元称为“高收入者”.

试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?

附注:①.参考数据:,,,其中,取

.参考公式:回归方程中斜率和截距的最小二乘估计分别为:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且.

(1)求证: 的中点;

(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案