精英家教网 > 高中数学 > 题目详情

【题目】直线l过P(1,2),且A(2,3),B(4,﹣5)到l的距离相等,则直线l的方程是(
A.4x+y﹣6=0
B.x+4y﹣6=0
C.3x+2y﹣7=0或4x+y﹣6=0
D.2x+3y﹣7=0或x+4y﹣6=0

【答案】C
【解析】解 设所求直线为l,由条件可知直线l平行于直线AB或过线段AB的中点,(1)AB的斜率为 =﹣4,当直线l∥AB时,l的方程是y﹣2=﹣4(x﹣1),即 4x+y﹣6=0.(2)当直线l经过线段AB的中点(3,﹣1)时,l的斜率为 = ,l的方程是 y﹣2= (x﹣1),即3x+2y﹣7=0.故所求直线的方程为3x+2y﹣7=0或4x+y﹣6=0. 故选C.
【考点精析】关于本题考查的一般式方程,需要了解直线的一般式方程:关于的二元一次方程(A,B不同时为0)才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动点P满足 + =2
(1)求动点P的轨迹F1 , F2的方程;
(2)设直线l与曲线C交于A,B两点,坐标原点O到直线l的距离为 ,求△OAB面 积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值10.

1)求实数的值;

2)设,讨论函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场预计全年分批购入每台价值2000元的电视机共3600台,每批购入的台数相同,且每批均须付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费43600元.现在全年只有24000元可用于支付运费和保管费,请问能否恰当安排每批进货的数量,使这24000元的资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个函数中,在(0,1)上为增函数的是(
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:(ax﹣1)(x﹣1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判断x=1能否为函数f(x)的极值点,并说明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定义在[1,t]上的函数g(x)=f(x)﹣ln(x+1)+x3在x=1处取得最大值,求实数t的最大值.

查看答案和解析>>

同步练习册答案