精英家教网 > 高中数学 > 题目详情

                                            

A.            B.           C.        D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把边长为
2
的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为(  )
A、
2
π
B、π
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在某一次有奖竞猜活动中,有一辆汽车藏在A、B、C三扇门中的某一扇门之后.主持人宣布,谁若猜中汽车在哪一扇门的后面,汽车就归谁.观众甲猜汽车在A门后面,接着主持人按照规则将B、C两门中无车的C门打开,此时,你认为B门后面有车的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.A.(选修4-1:几何证明选讲)
如图,⊙O的半径OB垂直于直径AC,D为AO上一点,BD的延长线交⊙O于点E,过E点的圆的切线交CA的延长线于P.
求证:PD2=PA•PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.

查看答案和解析>>

同步练习册答案