精英家教网 > 高中数学 > 题目详情

已知双曲线的中心为原点,左、右焦点分别为,离心率为,点是直线上任意一点,点在双曲线上,且满足.

1)求实数的值;

2)证明:直线与直线的斜率之积是定值;

3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点,在线段上去异于点的点,满足,证明点恒在一条定直线上.

 

1;(2)详见解析;(3)详见解析.

【解析】

试题分析:1)根据双曲线的离心率列方程求出实数的值;(2)设点的坐标为,点的坐标为,利用条件确定之间的关系,再结合点在双曲线上这一条件,以及斜率公式来证明直线与直线的斜率之积是定值;(3)证法一是先设点的坐标分别为,结合(2)得到,引入参数,利用转化为相应的条件,利用坐标运算得到点的坐标所满足的关系式,进而证明点恒在定直线上;证法二是设直线的方程为,将直线的方程与双曲线的方程联立,结合韦达定理,将条件进行等价转化为,结合韦达定理化简为,最后利用点在直线上得到,从而消去得到

,进而证明点恒在定直线.

试题解析:1)根据双曲线的定义可得双曲线的离心率为,由于,解得

故双曲线的方程为

2)设点的坐标为,点的坐标为,易知点

,因此点的坐标为

故直线的斜率,直线的斜率为

因此直线与直线的斜率之积为

由于点在双曲线上,所以,所以

于是有

(定值);

3)证法一:设点 且过点的直线与双曲线的右支交于不同的两点,由(2)知,

,则,即

整理得

由①③,②④得,

,代入⑥得,⑦,

将⑦代入⑤得,即点恒在定直线上;

证法二:依题意,直线的斜率存在,设直线的方程为

消去

因为直线与双曲线的右支交于不同的两点

则有

设点,由,得

整理得

将②③代入上式得

整理得,④

因为点在直线上,所以,⑤

联立④⑤消去,所以点恒在定直线.

考点:1.双曲线的离心率;2.向量的坐标运算;3.斜率公式;4.韦达定理

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十三第十章第十节练习卷(解析版) 题型:选择题

关于线性回归,以下说法错误的是(  )

(A)自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系

(B)在平面直角坐标系中用描点的方法得到的表示具有相关关系的两个变量的一组数据的图形叫做散点图

(C)线性回归直线方程最能代表观测值x,y之间的关系,且其回归直线一定过样本中心点(,)

(D)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性作试验,并由回归分析法分别求得相关系数rxy如下表

 

rxy

0.82

0.78

0.69

0.85

则甲同学的试验结果体现A,B两变量更强的线性相关性

 

查看答案和解析>>

科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题

已知函数,函数的图象在点处的切线平行于轴.

1)确定的关系;

2)试讨论函数的单调性;

3)证明:对任意,都有成立。

 

查看答案和解析>>

科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:填空题

dx + .

 

查看答案和解析>>

科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:选择题

展开式中存在常数项,n的值可以是(  )

A B C D

 

查看答案和解析>>

科目:高中数学 来源:2014年广东省广州市毕业班综合测试一理科数学试卷(解析版) 题型:填空题

如图,是圆的切线,切点为点,直线与圆交于两点,的角平分线交弦两点,已知,则的值为 .

 

 

查看答案和解析>>

科目:高中数学 来源:2014年广东省广州市毕业班综合测试一理科数学试卷(解析版) 题型:选择题

为整数,若除得余数相同,则称对模同余,记.,且,则的值可以为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年广东省广州市毕业班综合测试一文科数学试卷(解析版) 题型:填空题

一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是 .

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷1练习卷(解析版) 题型:填空题

抛物线yx2上的点到直线xy10的最短距离为________

 

查看答案和解析>>

同步练习册答案