精英家教网 > 高中数学 > 题目详情
已知向量
m
=(sinA,sinB),
n
=(cosB,cosA),
m
n
=sin2C,其中A、B、C为△ABC的内角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且
CA
• (
AB
-
AC
)  =18
,求AB的长.
分析:(Ⅰ)根据数量积和两角和的正弦公式,二倍角公式可求C的值.
(Ⅱ)根据等差数列和数量积,列出三个边长的关系,借助余弦定理求得AB的值.
解答:解:(Ⅰ)
m
n
=sinAcosB+sinBcosA=sin(A+B)
(2分)
对于△ABC中A+B=π-C,0<C<π
∴sin(A+B)=sinC,
m
n
=sinC
(4分)
又∵
m
n
=sin2C
,∴sinC=sin2C  ,cosC=
1
2
,C=
π
3
(7分)
(Ⅱ)由    sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,
由正弦定理得 2c=a+b(9分)
CA
• (
AB
-
AC
)  =18
,∴
CA
CB
=18

即  abcosC=18,ab=16(12分)
由余弦弦定理 c2=a2+b2-2abcosC=(a+b)2-3ab,
∴c2=4c2-3×36,,c=6(14分)
点评:本题考查平面向量的数量积的运算,正弦定理、余弦定理,两角和与差的三角函数,等差数列,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2

(Ⅰ)当θ∈[0,π]时,求函数f(θ)=
m
×
n
的值域;
(Ⅱ)若
m
n
,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),且
m
n
=-sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=
3
2
sinC
,且S△ABC=
3
,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m=(sinωx,cosωx),n=(cosωx,
3
cosωx)且0<ω<2,函数f(x)=m•n,且f(
π
3
)=
3
2

(Ⅰ)求ω;
(Ⅱ)将函数y=g(x)的图象向右平移
π
3
个单位,再将所得图象上各点的横坐标缩短为原来的
1
4
,得到函数y=f(x)的图象,求函数g(x)的解析式及其在[-
π
3
π
3
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinωx,1),
n
=(
3
Acos
ωx,
A
2
cos2
ωx)(A>0,ω>0),函数f(x)=
m
n
的最大值为3,且其图象相邻两条对称轴之间的距离为π.
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移
π
6
个单位,再将所得图象上各点的横坐标缩短为原来的
1
2
倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在[
π
4
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m=(cosθ,sinθ),n=(-sinθ,cosθ),θ∈(π,2π),且|m+n|=,求cos(+)的值.

查看答案和解析>>

同步练习册答案