精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)是定义在R上的奇函数,且是以4π为最小正周期的周期函数.
(1)若f(x)=cos(ωx+φ)(ω>0,φ∈[0,$\frac{π}{2}$]),求ω和φ的值;
(2)若α是第一象限的角,当sinα=$\frac{1}{3}$时,求f(16$\sqrt{2}$π•tanα)的值.

分析 (1)根据余弦型函数的图象和性质,结合函数的奇偶性和周期,可得ω和φ的值;
(2)若α是第一象限的角,当sinα=$\frac{1}{3}$时,f(16$\sqrt{2}$π•tanα)=f(8π),代入计算可得答案.

解答 解:(1)∵函数f(x)是定义在R上的奇函数,且是以4π为最小正周期的周期函数
若f(x)=cos(ωx+φ)(ω>0,φ∈[0,$\frac{π}{2}$]),
则ω=$\frac{2π}{4π}$=$\frac{1}{2}$,
cosφ=0,φ=$\frac{π}{2}$
(2)若α是第一象限的角,当sinα=$\frac{1}{3}$时,
cosα=$\frac{2\sqrt{2}}{3}$,tanα=$\frac{1}{2\sqrt{2}}$,
则f(16$\sqrt{2}$π•tanα)=f(8π)=cos($\frac{1}{2}$×8π+$\frac{π}{2}$)=cos$\frac{π}{2}$=0

点评 本题考查的知识点是余弦型函数的图象和性质,函数的奇偶性和周期,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+3,求
(1)函数在点(0,3)处的切线方程;
(2)在区间[-2,2]上的最大值、最小值
(3)极大值、极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.|x-4|<2的解集是{x|2<x<6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设y=f(2-x)可导,则y′等于(  )
A.f′(2-x)1n2B.2-x•f′(2-x)1n2C.-2-x•f′(2-x)1n2D.-2-x•f′(2-x)1og22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在△ABC中,tan$\frac{A}{2}$=$\frac{1}{2}$,tan$\frac{B}{2}$=$\frac{1}{3}$,△ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设A={x|1≤x≤10,x∈N},B={x|(x-1)2≤1},则A∩B={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ln(2x),函数g(x)=$\frac{1}{f′(x)}$+af′(x),y=g(x)在x=1处的切线与直线y=-x-5平行.
(1)求a的值.
(2)求直线y=$\frac{3}{4}$x+$\frac{3}{2}$与曲线y=g(x)所围成的图形的面积.
(3)若函数F(x)=f(x)+g(x)+2b在x∈(0,+∞)有且只有两个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是反比例函数,且f(-4)=3,则f(x)的解析式是f(x)=$-\frac{12}{x}$(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D、E分别在AA1、BB1上,AD=BE=1,F、G分别是B1C1、A1C1的中点,则直线GF与直线DE的距离为(  )
A.$\sqrt{3}$B.$\frac{3\sqrt{6}}{4}$C.$\frac{2\sqrt{5}}{3}$D.$\frac{\sqrt{19}}{2}$

查看答案和解析>>

同步练习册答案