精英家教网 > 高中数学 > 题目详情

【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.

1求该椭圆的标准方程;

2过点轴不垂直的直线交椭圆于两点,求证直线的交点在一条直线上.

【答案】12

【解析】

试题分析:

1先建立直角坐标系,使椭圆方程为标准方程,则

2研究圆锥曲线的定值问题,一般方法为以算代证,即先求两直线交点坐标,再确定交点所在定直线:由对称性可知两直线交点必在垂直于x轴的直线上,因此运算目标为求交点横坐标为定值,设的方程为,则 ,消去y得,再利用直线方程与椭圆方程联立方程组,结合韦达定理可得,代入化简得

试题解析:1 由题意可知两焦点为,且,因此椭圆的方程为. 4分

2 不与轴重合时,

的方程为,且

联立椭圆与直线消去可得,即

-

,即.

轴重合时,即的方程为,即.

联立消去可得.

综上的交点在直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)若在区间上为增函数,求的取值范围;

)当时,证明:

)当时,断方程是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点x轴的上方,直线分别交直线于点.

1)若点,求椭圆的方程及ABC的面积;

2)若为动点,设直线的斜率分别为.

试问是否为定值?若为定值,请求出;否则,请说明理由;

AEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;

(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;

(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设事件A表示“关于的一元二次方程有实根”,其中为实常数.

(Ⅰ)若为区间[0,5]上的整数值随机数,为区间[0,2]上的整数值随机数,求事件A发生的概率;

(Ⅱ)若为区间[0,5]上的均匀随机数,为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设lm是两条不同的直线,α是一个平面,则下列命题正确的是( )

A. l⊥m,则l⊥α

B. l⊥αl∥m,则m⊥α

C. l∥α,则l∥m

D. l∥αm∥α,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,其中.

1如果函数处的切线均为,求切线的方程及的值;

2如果曲线有且仅有一个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘老师是一位经验丰富的高三理科班班主任,经长期研究,他发现高中理科班的学生的数学成绩(总分150分)与理综成绩(物理、化学与生物的综合,总分300分)具有较强的线性相关性,以下是刘老师随机选取的八名学生在高考中的数学得分x与理综得分y(如下表):

学生编号

1

2

3

4

5

6

7

8

数学分数x

52

64

87

96

105

123

132

141

理综分数y

112

132

177

190

218

239

257

275

参考数据及公式:

(1)求出y关于x的线性回归方程;

(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);

(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在

高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案