【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
【答案】(1);(2)6.8千元.
【解析】试题分析:(1)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.
(2)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.
试题解析:(1)由题意, ,
,
,
∴y关于t的线性回归方程为; 8分
(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.
将2015年的年份代号t=9代入,得: (千元)
故预测该地区2015年农村居民家庭人均纯收入为6.8千元左右. 12分
科目:高中数学 来源: 题型:
【题目】将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为的纸箱放入的小球编号为,定义吻合度误差为
(1) 写出吻合度误差的可能值集合;
(2) 假设等可能地为1,2,3,4的各种排列,求吻合度误差的分布列;
(3)某人连续进行了四轮“放球”,若都满足,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨,生产每吨乙产品要用A原料1吨,B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是___________万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:
(1)估计在40名读书者中年龄分布在的人数;
(2)求40名读书者年龄的平均数和中位数;
(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着手机使用的不断普及,现在全国各地的中小学生携带手机进入校园已经成为了普遍的现象,也引起了一系列的问题。然而,是堵还是疏,就摆在了我们学校老师的面前.某研究型学习小组调查研究“中学生使用手机对学习的影响”,部分统计数据如下表:
不使用手机 | 使用手机 | 合计 | |
学习成绩优秀人数 | 18 | 7 | 25 |
学习成绩不优秀人数 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
参考数据:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为组,不使用手机且成绩优秀的18位同学记为组,计划从组推选的2人和组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自组、另一人来自组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设AB=6,在线段AB上任取两点C、D(端点A、B除外),将线段AB分成三条线段AC、CD、DB.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称为事件A)的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称为事件B)的概率;
(3)根据以下用计算机所产生的20组随机数,试用随机数模拟的方法,来近似计算(2)中事件B的概率, 20组随机数如下:
组别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
组别 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03> |
(X和Y都是0~1之间的均匀随机数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com