【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.
(1)求B的大小;
(2)设∠BAC的平分线AD交BC于D,AD=2 ,BD=1,求cosC的值.
【答案】
(1)解:在△ABC中,∵a2+c2=b2﹣ac,即a2+c2﹣b2=﹣ac.
∴cosB= =﹣ =﹣ ,B∈(0,π),可得B= .
(2)解:在△ABD中,由正弦定理可得: = ,
解得sin∠BAD= = .
cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD=1﹣×2× = .
∴sin∠BAC= = = .
∴cosC=cos(60°﹣∠BAC)= + = .
【解析】(1)利用余弦定理可得:cosB=﹣ ,B∈(0,π),可得B.(2)在△ABD中,由正弦定理可得: = ,解得sin∠BAD.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD.可得sin∠BAC= .可得cosC=cos(60°﹣∠BAC).
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(1)在给出的坐标系中,画出关于x,y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程 .
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克)
(参考公式: = , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2﹣ax+1>0对x∈R恒成立,若p且q为假,p或q为真,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代著名的数学专著《九章算术》里有﹣段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里:驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢, 问:需日相逢.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 万作为技改费用,投入(50+2x)万元作为宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(2x+ )+ cos(2x+ ),则( )
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC是一个面积较大的三角形,点P是△ABC所在平面内一点且 + +2 = ,现将3000粒黄豆随机抛在△ABC内,则落在△PBC内的黄豆数大约是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com