分析 由约束条件作出可行域,由三角形面积公式求得平面区域的面积;再化目标函数为直线方程的斜截式,数形结合得到最优解,进而求得最优解的最大值.
解答 解:由约束条件作出可行域如图,
A(0,-1),B(0,-3),
联立$\left\{\begin{array}{l}{x-y-1=0}\\{3x-2y-6=0}\end{array}\right.$,解得C(4,3).
∴平面区域△ABC的面积为$\frac{1}{2}×2×4=4$;
化目标函数z=3x-2y为$y=\frac{3}{2}x-\frac{z}{2}$.
由图可知,当直线$y=\frac{3}{2}x-\frac{z}{2}$与3x-2y-6=0重合时,z有最大值为6.
故答案为:4;6.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | B. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
C. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | D. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com