已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中为的导函数.证明:对任意.
(1)
(2)在区间内为增函数;在内为减函数.
(3)构造函数借助于导数分析函数单调性,进而得到求解最值来得到证明。
解析试题分析:解析:由f(x) = 可得,而,即,解得; 4分
(Ⅱ),令可得,
当时,;当时,.
于是在区间内为增函数;在内为减函数. 8分
(Ⅲ),
(1)当时, ,. 10分
(2)当时,要证.
只需证即可
设函数.
则,
则当时,
令解得,
当时;当时,
则当时,且,
则,于是可知当时成立
综合(1)(2)可知对任意x>0,恒成立. 14分
另证1:设函数,则,
则当时,
于是当时,要证,
只需证即可,
设,,
令解得,
当时;当时,
则当时,
于是可知当时成立
综合(1)(2)可知对任意x>0,恒成立.
另证2:根据重要不等式当时,即,
于是不等式,
设,,
令解得,
当时;当时<
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)若在上的最大值为,求实数的值;
(Ⅱ)若对任意,都有恒成立,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com