精英家教网 > 高中数学 > 题目详情

已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中的导函数.证明:对任意.

(1)
(2)在区间内为增函数;在内为减函数.
(3)构造函数借助于导数分析函数单调性,进而得到求解最值来得到证明。

解析试题分析:解析:由f(x) = 可得,而,即,解得;   4分
(Ⅱ),令可得,
时,;当时,.
于是在区间内为增函数;在内为减函数.      8分
(Ⅲ),
(1)当时, ,.  10分
(2)当时,要证.
只需证即可
设函数.
,
则当,
解得,
;当,
则当,且,
,于是可知当成立
综合(1)(2)可知对任意x>0,恒成立.          14分
另证1:设函数,则,
则当,
于是当时,要证,
只需证即可,
,,
解得,
;当,
则当,
于是可知当成立
综合(1)(2)可知对任意x>0,恒成立.
另证2:根据重要不等式当,即,
于是不等式,
,,
解得,
;当时<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(为非零常数).
(Ⅰ)当时,求函数的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)对于增区间内的三个实数(其中),
证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的图像在处的切线方程;
(Ⅱ)设实数,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)若关于的方程在区间上有唯一实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值
(1)求
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上的最大值为,求实数的值;
(Ⅱ)若对任意,都有恒成立,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数在上的最大值和最小值;
(2)讨论函数的单调性;
(3)若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案