精英家教网 > 高中数学 > 题目详情
2.$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{CB}$-$\overrightarrow{BA}$=3$\overrightarrow{AB}$.

分析 利用向量的三角形法则、向量的线性运算即可得出.

解答 解:原式=$\overrightarrow{AB}$+$\overrightarrow{AB}$+$\overrightarrow{AB}$=3$\overrightarrow{AB}$.
故答案为:3$\overrightarrow{AB}$.

点评 本题考查了向量的三角形法则、向量的线性运算,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l1:3x+4y-2=0,l2:2x+y+2=0,l1与l2交于点P.
(Ⅰ)求点P的坐标,并求点P到直线4x-3y-6=0的距离;
(Ⅱ)分别求过点P且与直线3x-y+1=0平行和垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{a}{x-a}$在区间(3,+∞)上单调递减,则a的取值范围是(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍,焦距为12$\sqrt{2}$.
(1)求此椭圆的标准方程;
(2)一双曲线以椭圆的焦点为顶点,以椭圆的顶点为焦点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.平行四边形ABCD中,AB=4,AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=4,点P在边CD上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[-1,8]B.[-1,+∞)C.[0,8]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=4x-3•2x+3的值域为[7,43],求x范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C的极坐标方程为ρ=4cosθ,以极点为平面直角坐标系的原点,轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数)
(I)将曲线C的极坐标方程和直线1的参数方程化为普通方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点P(m,0),若|PA|•|PB|=5,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的通项公式是an=1-$\frac{1}{n}$,求证该数列是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x),对任意的实数x满足f(x-2)=f(x+2),且当x∈[-1,3)时,f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x≤1)}\\{-|x-2|(1<x<3)}\end{array}\right.$,若直线y=kx与函数f(x)的图象有5个公共点,则实数k的取值范围是(-$\frac{\sqrt{15}}{15}$,-$\frac{1}{5}$)∪($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$).

查看答案和解析>>

同步练习册答案