精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,P点的极坐标为 ,在平面直角坐标系中,直线l经过点P,斜率为
(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求 的值.

【答案】解:(Ⅰ)曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,直角坐标方程为x2﹣4y=0;
直线l经过点P(0,3),斜率为 ,直线l的参数方程为 (t为参数);
(Ⅱ) (t为参数)代入x2﹣4y=0,整理,得:t2﹣8 t﹣48=0,
设t1 , t2是方程的两根,∴t1t2=﹣48,t1+t2=8
= = =
【解析】(Ⅰ)曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,即可写出曲线C的直角坐标方程;直线l经过点P(0,3),斜率为 ,即可写出直线l的参数方程;(Ⅱ) (t为参数)代入圆的普通方程,整理,得:t2+ t﹣3=0,利用参数的几何意义,求 的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为.若的面积为,且,则外接圆的面积为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥的表面积是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1只还需另投入16美元.设苹果公司一年内共生产该款iphone手机x万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=
(1)写出年利润W(万元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题x24x30,则x3”的逆否命题是:x≠3,则x24x3≠0”

B. “x>1”“|x|>0”的充分不必要条件

C. pq为假命题,则pq均为假命题

D. 命题p“x0∈R使得x01<0”,则p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  )

A. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个

B. 与去年同期相比,2017年第一季度五个省的总量均实现了增长

C. 去年同期河南省的总量不超过4000亿元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,其中m<n,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n]. 则称函数f(x)是区间[m,n]上的“保值函数”,区间[m,n]称为“保值区间”.
(1)求证:函数g(x)=x2﹣2x不是定义域[0,1]上的“保值函数”.
(2)若函数f(x)=2+ (a∈R,a≠0)是区间[m,n]上的“保值函数”,求a的取值范围.
(3)对(2)中函数f(x),若不等式|a2f(x)|≤2x对x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点),再沿直线裁剪.

(1)当时,试判断四边形的形状,并求其面积;

(2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.

查看答案和解析>>

同步练习册答案