精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,将直线y=
x
2
与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=
1
0
π(
x
2
2dx=
π
12
x3|
0
1
=
π
12

据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=
 

考点:定积分在求面积中的应用
专题:计算题,函数的性质及应用
分析:根据题意,类比可得旋转体的体积V=
4
0
πydy
,求出原函数,即可得出结论.
解答: 解:由题意旋转体的体积V=
4
0
πydy
=
π
2
y2
|
4
0
=8π,
故答案为:8π.
点评:本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

O是平面上一定点,A、B、C是平面上不共线三点,动点P满足
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
)
,λ∈R,则P点的轨迹为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面四边形ABCD内,点E和F分别在AD和BC上,且
DE
EA
.
CF
=λ
FB
(λ∈R,λ≠-1),用λ,
DC
AB
表示
EF
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别是F1,F2,右顶点为A,上顶点为B,若椭圆C的中点到直线AB的距离为
6
6
|F1F2|,则椭圆C的离心率e=(  )
A、
2
2
B、
3
2
C、
5
2
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是R上的减函数,且函数y=f(x-1)的图象关于点A(1,0)对称.设动点M(x,y),若实数x,y满足不等式 f(x2-8y+24)+f(y2-6x)≥0恒成立,则
OA
OM
的取值范围是(  )
A、(-∞,+∞)
B、[-1,1]
C、[2,4]
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x2+
1
x3
)5
展开式中的常数项为
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a2n=n-an,a2n+1=an+1,则a100=(  )
A、30B、31C、32D、33

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名,按年龄所在的区间分组:第1组:[20,25);第2组:[25,30);第3组:[30,35);第4组:[35,40);第5组:[40,45].得到的频率分布直方图如下图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在满足条件(1)时,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
a1
1b
的一个属于特质值3的特征向量
α
=
1
1
,正方形区域OABC在矩阵N应对的变换作用下得到矩形区域OA′B′C′,如图所示.
(1)求矩阵M;
(2)求矩阵N及矩阵(MN)-1

查看答案和解析>>

同步练习册答案