精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,求的最小值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

(1) 3.(2) .(3) .

解析试题分析:(1) 当时,   
时 函数取最小值3.
(2)  设
依题意  得 .
(3) 当恒成立
 当 恒成立
 则


(1)当时, 单调递增,
(2)当时,设
  有两个根,一个根大于1,一个根小于1.
不妨设
 即 单调递减 
不满足已知条件.
综上:的取值范围为.
考点:本题考查了导数的运用
点评:此类问题是在知识的交汇点处命题,将函数、导数、不等式、方程的知识融合在一起进行考查,重点考查了利用导数研究函数的极值与最值等知识

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=.
(1)求f (x)在[-1, 1]上的解析式;  
(2)证明f (x)在(—1, 0)上时减函数;
(3)当λ取何值时, 不等式f (x)>λ在R上有解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正比例函数y=2x的图像l1与反比例函数y=的图像相交于点A(a,2),将直线l1向上平移3个单位得到的直线l2与双曲线相交于BC两点(点B在第一象限),与y轴交于点D

(1)求反比例函数的解析式;
(2)求△DOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数有最 大值,求实数的值
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;
(2)设,若存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数无零点,求实数的取值范围;
(Ⅱ)若函数有且仅有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的值域;
(2)若函数是(-,+)上的减函数,求实数的高考资源网取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

同步练习册答案