【题目】如图2,在三棱锥A-BCD中,AB=CD=4, AC=BC=AD=BD=3.
(I)证明:ABCD;
(II) E在线段BC上,BE=2EC, F是线段AC的中点,求平面ADE与平面BFD所成锐二面角的余弦值
【答案】(Ⅰ)见解析(Ⅱ)
【解析】试题分析:(Ⅰ)取中点,连接, ,易证, ,进而得,从而得证;
(Ⅱ)过作交的延长线于点, ,由(Ⅰ)得,所以AP⊥平面BDC,以为原点, 为轴, 为轴,过作的平行线为轴,建立空间直角坐标系,分别求得面和面的法向量,进而利用向量求解即可.
试题解析:
(Ⅰ)
证明:如图2,取中点,连接, ,
,
, , ,
, ,
.
(Ⅱ)解:过作交的延长线于点, ,由(Ⅰ)得,所以AP⊥平面BDC,以为原点, 为轴, 为轴,过作的平行线为轴,建立如图所示的空间直角坐标系,
, , , , , , , , , ,
设平面的法向量为,
解得,
设平面的法向量为,
解得,
设平面ADE与平面BFD所成的二面角为,
则.
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点和上的点,满足, .
(1)当点在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点, , 是坐标原点,且时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)射线与曲线、分别交于点(且均异于原点)当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,设直线的极坐标方程为.
(1)求曲线和直线的普通方程;
(2)设为曲线上任意一点,求点到直线的距离的最值.
【答案】(1), ;(2)最大值为,最小值为
【解析】试题分析:(1)根据参数方程和极坐标化普通方程化法即易得结论的普通方程为;直线的普通方程为.(2)求点到线距离问题可借助参数方程,利用三角函数最值法求解即可故设, .即可得出最值
解析:(1)根据题意,由,得, ,
由,得,
故的普通方程为;
由及, 得,
故直线的普通方程为.
(2)由于为曲线上任意一点,设,
由点到直线的距离公式得,点到直线的距离为
.
∵ ,
∴ ,即 ,
故点到直线的距离的最大值为,最小值为.
点睛:首先要熟悉参数方程和极坐标方程化普通方程的方法,第一问基本属于送分题所以务必抓住,对于第二问可以总结为一类题型,借助参数方程设点的方便转化为三角函数最值问题求解
【题型】解答题
【结束】
23
【题目】已知函数,.
(1)解关于的不等式;
(2)若函数的图象恒在函数图象的上方,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,,动点不在轴上,直线、的斜率之积.
(Ⅰ)求动点的轨迹方程;
(Ⅱ)经过点的两直线与动点的轨迹分别相交于、两点。是否存在常数,使得任意满足的直线恒过线段的中点?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com