精英家教网 > 高中数学 > 题目详情
16.已知x,y∈(0,+∞),且满足$\frac{1}{x}+\frac{1}{2y}=1$,那么x+4y的最小值为(  )
A.$3-\sqrt{2}$B.$3+2\sqrt{2}$C.$3+\sqrt{2}$D.$4\sqrt{2}$

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵x,y∈(0,+∞),且满足$\frac{1}{x}+\frac{1}{2y}=1$,
那么x+4y=(x+4y)$(\frac{1}{x}+\frac{1}{2y})$=3+$\frac{4y}{x}+\frac{x}{2y}$≥3+2$\sqrt{\frac{4y}{x}•\frac{x}{2y}}$=3+2$\sqrt{2}$,
当且仅当x=2$\sqrt{2}$y=1+$\sqrt{2}$时取等号.
∴最小值为3+2$\sqrt{2}$.
故选:B.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx-(a+1)x-$\frac{1}{x}$
(1)当a<-1时,讨论f(x)的单调性
(2)当a=1时,若g(x)=-x-$\frac{1}{x}$-1,证明:当x>1时,g(x)的图象恒在f(x)的图象上方
(3)证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知变量x,y线性负相关,且由观测数据算得样本平均数$\overline x=3$,$\overline y=3.5$,则由该观测数据算得的线性回归方程可能是(  )
A.y=0.4x+2.4B.y=2x+2.4C.y=-2x+9.5D.y=-0.3x+4.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线与圆x2+y2-4y+3=0相切,则该双曲线C的离心率为(  )
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别为a,b,c,a2+b2+c2=ac+bc+ca.
(1)证明:△ABC是正三角形;
(2)如图,点D的边BC的延长线上,且BC=2CD,AD=$\sqrt{7}$,求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和为Sn,且满足4Sn=an+1(n∈N*),设bn=log3|an|,则数列{bn}的通项公式为bn=-n..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f′(x)是定义在(0,+∞)上的函数f(x)的导函数,若方程f′(x)=0无解,且?x∈(0,+∞),f[f(x)-log2016x]=2017,设a=f(20.5),b=f(logπ3),c=f(log43),则a,b,c的大小关系是(  )
A.b>c>aB.a>c>bC.c>b>aD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.S=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{20×21}$=$\frac{20}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)为定义在R上的奇函数,当x>1时,f(x)=2x-8x-f(2),则当x<-1时,f(x)的表达式为(  )
A.f(x)=-2-x-8x-6B.f(x)=-2-x-8x+6C.f(x)=2-x+8x+6D.f(x)=-2-x+8x-6

查看答案和解析>>

同步练习册答案