精英家教网 > 高中数学 > 题目详情
15.已知定义在R上的函数f(x)存在零点,且对任意m,n∈R都满足f[$\frac{m}{2}$f(m)+f(n)]=f2(m)+2n,则函数g(x)=|f[f(x)]-4|+log3x-1的零点个数为3.

分析 令f(m)=0得出f[f(n)]=2n,从而得出g(x)=|2x-4|+log3x-1,分别作出y=1-log3x和y=|2x-4|的函数图象,根据函数图象的交点个数判断g(x)的零点个数.

解答 解:设m为f(x)的零点,则f(m)=0,
∴f[f(n)]=2n,
∴f[f(x)]=2x,
∴g(x)=|2x-4|+log3x-1,
令g(x)=0得1-log3x=|2x-4|,
分别作出y=1-log3x和y=|2x-4|的函数图象,如图所示:

由图象可知y=1-log3x和y=|2x-4|的函数图象有3个交点,
∴g(x)=|2x-4|+log3x-1有3个零点.
故答案为3.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用符号?x>表示.对于实数a,无穷数列{an}满足如下条件:
①a1=?a>; ②an+1=$\left\{\begin{array}{l}{<\frac{1}{{a}_{n}}>({a}_{n}≠0)}\\{0({a}_{n}=0)}\end{array}\right.$.
(Ⅰ)若a=$\sqrt{2}$时,数列{an}通项公式为an=$\sqrt{2}$-1;
(Ⅱ)当a>$\frac{1}{2}$时,对任意n∈N*都有an=a,则a的值为$\frac{\sqrt{5}-1}{2}$ 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$若f(a)=f(b)=c,f′(b)<0,则a,b,c的大小关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax(a>0)在[-1,2]上的最大值为8,函数g(x)是h(x)=ex的反函数.
(1)求函数g(f(x))的单调区间;
(2)求证:函数y=f(x)h(x)-$\frac{1}{x}$(x>0)恰有一个零点x0,且g(x0)<x02h(x0)-1
(参考数据:e=2.71828…,ln2≈0.693).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一张画有直角坐标系的图纸折叠一次,使得点A(0,2)与点B(4,0)重合,若此时点C(7,3)与点D(m,n)重合,则m+n的值为(  )
A.6B.$\frac{31}{2}$C.5D.$\frac{34}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{{e}^{x}-5,x>0}\end{array}\right.$若关于x的方程|f(x)|-ax-5=0恰有三个不同的实数解,则满足条件的所有实数a的取值集合为{-e,-$\frac{5}{ln5}$,2,$\frac{5}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AB=2$\sqrt{2}$,D、E分别是的AB,BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在三棱锥P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,则该三棱锥外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案