精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中, 是坐标原点,设函数的图象为直线,且轴、轴分别交于两点,给出下列四个命题:

存在正实数,使的面积为的直线仅有一条;

存在正实数,使的面积为的直线仅有二条;

存在正实数,使的面积为的直线仅有三条;

存在正实数,使的面积为的直线仅有四条.

其中,所有真命题的序号是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

【答案】D

【解析】∵直线轴, 轴交点的坐标分别是: ,当时, ,当且仅当时取等号,∴,当且仅当时取等号,∴当,在时, 有两个值;当时, ,当且仅当时取等号,∴,当且仅当时取等号,当时,在时, 有两个值∴当时,仅有一条直线使的面积为,故①不正确;当时,仅有两条直线使的面积为,故②正确;当时,仅有三条直线使的面积为,故③正确;当时,仅有四条直线使的面积为,故④正确综上所述,真命题的序号是②③④故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,∠A,∠B,∠C所对边分别为abc,且bsinC+2csinBcosA0

1)求∠A大小;

2)若a2c2,求△ABC的面积S的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过点,且和直线相切.

(Ⅰ)求该动圆圆心的轨迹的方程;

(Ⅱ)已知点,若斜率为1的直线与线段相交(不经过坐标原点和点),且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增数列的前项和为,且满足.

1)求证:数列为等差数列;

2)试求所有的正整数,使得为整数;

3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

)求的取值范围.

)记两个极值点 ,且,已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个项的实数列 ,任意选取一个实数,变换将数列 变换为数列 ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数可以不相同,第次变换记为,其中为第次变换时所选择的实数.如果通过次变换后,数列中的各项均为,则称 为“次归零变换”.

)对数列 ,给出一个“次归零变换”,其中

)对数列 ,给出一个“次归零变换”,其中

)证明:对任意项的实数列,都存在“次归零变换”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中成等差数列且

物理成绩统计如表.(说明:数学满分150分,物理满分100分)

分组

频数

6

9

20

10

5

1)根据频率分布直方图,请估计数学成绩的平均分;

2)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”的同学总数为6人,从数学成绩为“优”的同学中随机抽取2人,求两人恰好均为物理成绩“优”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年扬州市政府打算在如图所示的某“葫芦”形花坛中建一喷泉,该花坛的边界是两个半径为12米的圆弧围成,两圆心之间的距离为米.在花坛中建矩形喷泉,四个顶点均在圆弧上,于点.设.

时,求喷泉的面积;

(2)求为何值时,可使喷泉的面积最大?.

查看答案和解析>>

同步练习册答案