精英家教网 > 高中数学 > 题目详情
如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,

(Ⅰ)求直线的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.
(1)
(2)

试题分析:解:(I)设,由已知得
则直线的方程为,直线的方程为,  4分
消去即得的轨迹的方程为. 6分
(II)方法一:由已知得,又,则, 8分
设直线代入

.…10分


,  12分
到直线的距离为,故
经检验当直线的斜率不存在时也满足.  14分
方法二:设,则,且可得直线的方程为…10分
代入
,即,…12分
,故. 14分
点评:主要是考查了直线与椭圆的位置关系的运用,运用代数的方法来解决几何问题,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆轴相切,求圆被直线截得的线段长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与曲线的交点为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为,过点作圆的两条切线,切点分别为,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆垂直于轴的一条弦,所在直线的方程为是椭圆上异于的任意一点,直线分别交定直线于两点,求证.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左焦点为F,右顶点为A,以FA为直径的圆经过椭圆的上顶点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点F2作倾斜角为弦AB,则|AB︳为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案