精英家教网 > 高中数学 > 题目详情

【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

分组

频数

频率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合计

1.00

如果用分层抽样的方法从样本分数在[60,70)[80,90)的人中共抽取6,再从6人中选2,2人分数都在[80,90)的概率.

【答案】(1)见解析.

(2).

【解析】

(1)先填写完整频率分布表,由此能补全频率分布直方图.
(2)由题意知样本分数在8人,样本分数在16人,用分层抽样的方法从样本分数在的人中共抽取6人,则抽取的分数在)和)的人数分别为2人和4人.记分数在 的为.由此利用列举法能求出2人分数都在的概率.

填写频率分布表中的空格,如下表:

分 组

频 数

频 率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

0.2

[80,90)

16

0.32

[90,100]

14

0.28

合 计

50

1.00

全频率分布直方图,如下图:

(2)由题意知样本分数在[60,70)8,样本分数在[80,90)16,

用分层抽样的方法从样本分数在[60,70)[80,90)的人中共抽取6,

则抽取的分数在[60,70)[80,90)的人数分别为2人和4.

记分数在[60,70)的为a1,a2,[80,90)的为b1,b2,b3,b4.

从已抽取的6人中任选两人的所有可能结果有15,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4},

“2人分数都在[80,90)”为事件A,

则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}6,所以P(A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,求△AOB面积最小时l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足2Sn=3an﹣1,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设anbn= ,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,F1 , F2分别为椭圆 + =1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.

(1)若点C的坐标为( ),且BF2= ,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集UR,集合A={x|0<x≤2},B={x|x<-3x>1}.

:(1)A∩B;(2)(UA)∩(UB);(3)U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是( )
A.
B.k<0或
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图4,四边形为正方形,平面于点,交于点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和.若对任意的 则k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是椭圆C: (a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案