精英家教网 > 高中数学 > 题目详情
(2010•深圳二模)将长度为1的线段随机折成三段,则三段能构成三角形的概率是(  )
分析:先设木棒其中两段的长度分别为x、y,分别表示出木棒随机地折成3段的x,y的约束条件和3段构成三角形的约束条件,再画出约束条件表示的平面区域,利用面积测度即可求出构成三角形的概率.
解答:解:设三段长分别为x,y,1-x-y,
则总样本空间为
0<x<1
0<y<1
x+y<1
其面积为
1
2

能构成三角形的事件的空间为
x+y>1-x-y
x+1-x-y>y
y+1-x-y>x
其面积为
1
8

则所求概率为 P=
1
8
1
2
=
1
4

故三段可以构成三角形的概率为:
1
4

故选C.
点评:本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•深圳二模)(几何证明选讲选做题)已知圆的直径AB=10,C为圆上一点,过C作CD⊥AB于D(AD<BD),若CD=4,则AC的长为
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)如图所示的程序框图输出的结果是
4
5
;(如写A=
4
5
不扣分)
4
5
;(如写A=
4
5
不扣分)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)若实数x,y满足
x≤1
y≥0
x-y≥0
,则x+y的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)如图,在△OAB中,P为线段AB上的一点,
OP
=x
OA
+y
OB
,且
BP
=2
PA
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)设i是虚数单位,则复数(2+i)(1-i)在复平面内对应的点位于(  )

查看答案和解析>>

同步练习册答案