【题目】已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.
(1)求a1,a2,a3,并猜想{an}的通项公式;
(2)证明(1)中的猜想.
【答案】(1)a1=-1;a2=-;a3=-;猜想an=-(n∈N*)(2)证明见解析
【解析】
(1)分别令n=1、2,通过解一元二次方程结合已知的递推公式可以求出a1,a2,同理求出a3,根据它们的值的特征猜想{an}的通项公式;
(2)利用数学归纳法,通过解一元二次方程可以证明即可.
(1)当n=1时,由已知得a1=+-1,
即
∴
当n=2时,由已知得a1+a2=+-1,
将a1=-1代入并整理得+2a2-2=0.
∴a2=-(a2>0).
同理可得a3=-.
猜想an=-(n∈N*).
(2)【证明】①由(1)知,当n=1,2,3时,通项公式成立.
②假设当n=k(k≥3,k∈N*)时,通项公式成立,
即ak=-.
由于ak+1=Sk+1-Sk=+--,
将ak=-代入上式,整理得
+2ak+1-2=0,
∴ak+1=-,
即n=k+1时通项公式成立.
根据①②可知,对所有n∈N*,an=-成立.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;
(2)若曲线上所有的点均在直线的右下方,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆(a>1).
(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3+x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成,,,,五组,并作出如图频率分布直方图:
(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽取2户进行捐款援助,设抽出损失超过8000元的居民为户,求的分布列和数学期望;
(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求,,,,,,的值,并说明是否有以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过4000元 | 经济损失超过4000元 | 合计 | |
捐款超过500元 | |||
捐款不超过500元 | |||
合计 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:临界值表参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC内接于圆柱的底面圆O,AB是圆O的直径,AB=2,BC=1,DC、EB是两条母线,且tan∠EAB=.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)求过点A(2,6)且在两坐标轴上的截距相等的直线m的方程;
(Ⅱ)求过点A(2,6)且被圆C:(x﹣3)2+(y﹣4)2=4截得的弦长为的直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com