精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和Sn满足:Sn1,且an>0nN*.

1)求a1a2a3,并猜想{an}的通项公式;

2)证明(1)中的猜想.

【答案】(1)a11a2a3;猜想annN*)(2)证明见解析

【解析】

1)分别令n12,通过解一元二次方程结合已知的递推公式可以求出a1a2,同理求出a3,根据它们的值的特征猜想{an}的通项公式;

2)利用数学归纳法,通过解一元二次方程可以证明即可.

1)当n1时,由已知得a11

n2时,由已知得a1a21

a11代入并整理得2a220.

a2a2>0.

同理可得a3.

猜想annN*.

2)【证明】①由(1)知,当n123时,通项公式成立.

②假设当nkk≥3kN*)时,通项公式成立,

ak.

由于ak1Sk1Sk

ak代入上式,整理得

2ak120

ak+1

nk1时通项公式成立.

根据①②可知,对所有nN*an成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;

(2)若曲线上所有的点均在直线的右下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且

(1)求的值;

(2)若,求的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点是 ,且椭圆经过点.

(1)求椭圆的标准方程;

(2)若过左焦点且倾斜角为45°的直线与椭圆交于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆a1.

)求直线y=kx+1被椭圆截得的线段长(用ak表示);

)若任意以点A0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3x2axax∈R,其中a>0.

(1)求函数f(x)的单调区间;

(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成五组,并作出如图频率分布直方图:

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值代表);

(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽取2户进行捐款援助,设抽出损失超过8000元的居民为户,求的分布列和数学期望;

(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求的值,并说明是否有以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

捐款不超过500元

合计

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:临界值表参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图ABC内接于圆柱的底面圆OAB是圆O的直径AB2BC1DCEB是两条母线tanEAB.

(1)求三棱锥CABE的体积;

(2)证明:平面ACD⊥平面ADE

(3)CD上是否存在一点M使得MO∥平面ADE证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)求过点A26)且在两坐标轴上的截距相等的直线m的方程;

(Ⅱ)求过点A26)且被圆C:(x32+y424截得的弦长为的直线l的方程.

查看答案和解析>>

同步练习册答案