【题目】已知定义在上的奇函数满足.且当时,.若对于任意,都有,则实数的取值范围为________.
【答案】
【解析】
f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,先得到[﹣1,3]一个周期内f(x)的图象,求出该周期内使f(x)≥1﹣log23成立的x的范围,从而推出的范围,再分t的范围讨论即可.
解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,
所以当0≤x≤1时,f(x)=log2(x+1),
当x∈[﹣1,0]时,﹣x∈[0,1],此时f(x)=﹣f(﹣x)=﹣log2(﹣x+1),
又知道f(x+2)=﹣f(x)=f(﹣x),
所以f(x)以x=1为对称轴.且当x∈[﹣1,1]时f(x)单调递增,
当x∈[1,3]时f(x)单调递减.
当x∈[﹣1,3]时,令f(x)=1﹣log23,得x,或x,
所以在[﹣1,3]内当f(x)>1﹣log23时,x∈[,].
设g(x),若对于x属于[0,1]都有,
因为g(0)∈[,].
故g(x)∈[,].
①当0时,g(x)在[0,1]上单调递减,
故g(x)∈[t,][,].得t≥0,无解.
②0≤t≤1时,,此时g(t)最大,g(1)最小,
即g(x)∈[t﹣1,][,].得t∈[0,1].
③当1<t≤2时,即,此时g(0)最小,g(t)最大,
即g(x)∈[,][,].得t∈(1,2],
④当t>2时,g(x)在[0,1]上单调递增,
故g(x)∈[,t][,].解得,t∈(2,3],
综上t∈[0,3].
故填:[0,3].
科目:高中数学 来源: 题型:
【题目】某大型超市公司计划在市新城区开设分店,为确定在新城区开设分店的个数,该公司对该市已开设分店的其他区的数据统计后得到下列信息(其中表示在该区开设分店的个数,表示这个分店的年收入之和):
分店个数(个) | 2 | 3 | 4 | 5 | 6 |
年收入(万元) | 250 | 300 | 400 | 450 | 600 |
(Ⅰ)该公司经过初步判断,可用线性回归模型拟合与的关系,求关于的回归方程;
(Ⅱ)假设该公司每年在新城区获得的总利润(单位:万元)与,之间的关系为,请根据(Ⅰ)中的线性回归方程,估算该公司在新城区开设多少个分店时,才能使新城区每年每个分店的平均利润最大.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为: ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应低碳绿色出行,某市推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车,每次租车收费得标准由以下两部分组成:(1)根据行驶里程数按1元/公里计费;(2)当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费;(3)租车时间不足1分钟,按1分钟计算.已知张先生从家里到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间t20,60(单位:分钟).由于堵车,红绿灯等因素,每次路上租车时间t是一个随即变量.现统计了他50次路上租车时间,整理后得到下表:
租车时间t(分钟) | [20,30] | (30,40] | (40,50] | (50,60] |
频数 | 2 | 18 | 20 | 10 |
将上述租车时间的频率视为概率.
(1)写出张先生一次租车费用y(元)与租车时间t(分钟)的函数关系式;
(2)公司规定,员工上下班可以免费乘坐公司接送车,若不乘坐公司接送车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司接送车,还是租用该款新能源汽车?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的空间几何体中,平面平面与都是边长为2的等边三角形,与平面所成的角为60°,且点在平面上的射影落在的平分线上.
(1)求证:平面;
(2)求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( )
A.这5个家庭均有小汽车的概率为
B.这5个家庭中,恰有三个家庭拥有小汽车的概率为
C.这5个家庭平均有3.75个家庭拥有小汽车
D.这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解居民消费情况,某地区调查了10000户小家庭的日常生活平均月消费金额,根据所得数据绘制了样本频率分布直方图,如图所示,每户小家庭的平均月消费金额均不超过9千元,其中第六组第七组第八组尚未绘制完成,但是已知这三组的频率依次成等差数列,且第六组户数比第七组多500户,
(1)求第六组第七组第八组的户数,并补画图中所缺三组的直方图;
(2)若定义月消费在3千元以下的小家庭为4类家庭,定义月消费在3千元至6千无的小家庭为B类家庭,定义月消费6千元以上的小家庭为C类家庭,现从这10000户家庭中按分层抽样的方法抽取80户家庭召开座谈会,间A,B,C各层抽取的户数分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校组织的一次教师招聘共分笔试和面试两个环节,笔试环节共有20名大学毕业生参加,其中男、女生的比例恰好为,其成绩的茎叶图如图所示.假设成绩在90分以上的考生可以进入面试环节.
(1)试比较男、女两组成绩平均分的大小,并求出女生组的方差;
(2)从男、女两组可以进入面试环节的考生中分别任取1人,求两人分差不小于3分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com