精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinωx•cosωx+2
3
cos2ωx-
3
-1
(其中ω>0),x1、x2是函数y=f(x)的两个不同的零点,且|x1-x2|的最小值为
π
3

(1)求ω的值;
(2)若f(a)=
2
3
,求sin(
6
-4a)
的值.
分析:(1)利用两角和与差的正弦可将f(x)化简为f(x)=2sin(2ωx+
π
3
)-1,由f(x)=0可求得sin(2ωx+
π
3
)=
1
2
,依题意可求得|x1-x2|min=
π
=
π
3
,从而可求得ω的值;
(2)由f(α)=
2
3
,得sin(2α+
π
3
)=
5
6
,利用诱导公式与二倍角的余弦公式可求得sin(
6
-4α)的值.
解答:解:(1)f(x)=sin2ωx+
3
cos2ωx-1=2sin(2ωx+
π
3
)-1,
由f(x)=0得:2sin(2ωx+
π
3
)-1=0,
∴sin(2ωx+
π
3
)=
1
2

∵x1、x2是函数y=f(x)的两个不同的零点,
∴2ωx1+
π
3
=
π
6
+2kπ或2ωx2+
π
3
=
6
+2kπ(k∈Z),
∴2ω|x1-x2|=2kπ或2ω|x1-x2|=2kπ+
3

∴|x1-x2|min=
π
=
π
3

∴ω=1.
(2)f(x)=2sin(2x+
π
3
)-1,
由f(a)=
2
3
,得2sin(2a+
π
3
)-1=
2
3

∴sin(2α+
π
3
)=
5
6

∴sin(
6
-4α)
=-cos[
2
-(
6
-4α)]
=-cos2(2α+
π
3

=2sin2(2α+
π
3
)
-1
=2×
25
36
-1
=
7
18
点评:本题考查两角和与差的正弦,着重考查函数的零点的理解与应用,突出考查三角函数的化简求值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案