函数的定义域为,若存在闭区间[m,n] D,使得函数满足:①
在[m,n]上是单调函数;②在[m,n]上的值域为[2m,2n],则称区间[m,n]为的
“倍值区间”.下列函数中存在“倍值区间”的有 (填上所有正确的序号)
①; ②;
③; ④
①③④.
【解析】解:函数中存在“倍值区间”,则:①f(x)在[a,b]内是单调函数;②
f(a)=2a, f(b)=2b或f(a)=2b, f(b)=2a
①f(x)=x2(x≥0),若存在“倍值区间”[a,b],则
A=0,b=2
∴f(x)=x2(x≥0),若存在“倍值区间”[0,2];
②f(x)=ex(x∈R),若存在“倍值区间”[a,b],则f(a)=2a, f(b)=2b
构建函数g(x)=ex-x,∴g′(x)=ex-1,∴函数在(-∞,0)上单调减,在(0,+∞)上单调增,∴函数在x=0处取得极小值,且为最小值.∵g(0)=1,∴,g(x)>0,∴ex-x=0无解,故函数不存在“倍值区间”;
③f(x)=
若存在“倍值区间”[a,b]⊆[0,1],则f(a)=2a, f(b)=2b
∴a=0,b=1,若存在“倍值区间”[0,1];
④f(x)=loga(ax- ),loga(am-)=2m,loga(an-)=2n (a>0,a≠1).不妨设a>1,则函数在定义域内为单调增函数
若存在“倍值区间”[m,n],则loga(an-)=2n,loga(am-)=2m
∴2m,2n是方程loga(ax-)=2x的两个根,∴2m,2n是方程a2x-ax+=0的两个根,由于该方程有两个不等的正根,故存在“倍值区间”[m,n];综上知,所给函数中存在“倍值区间”的有①③④
故选C.
科目:高中数学 来源: 题型:
已知:函数(),.
(1)若函数图象上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数与定义域上的任意实数,若存在常数,使得不等式和
都成立,则称直线为函数与的“分界线”。设,
,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存
在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com