精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{2}$)的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 由周期求出ω,由特殊点的坐标求出φ的值,可得函数的f(x)的解析式,从而求得f($\frac{π}{2}$)的值

解答 解:据图分析得$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{T}{2}$,
∴T=π,
又∵T=$\frac{2π}{ω}$,
∴ω=$\frac{2π}{2}$=2,
∴函数f(x)=sin(2x+φ),
∵sin(2×$\frac{5}{12}$π+φ)=1,|φ|<$\frac{π}{2}$)
∴φ=-$\frac{π}{3}$,
∴函数f(x)=sin(2x-$\frac{π}{3}$),
∴f($\frac{π}{2}$)=sin(2×$\frac{π}{2}$-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
故选:D

点评 本题主要考查由函数y=sin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知全集U={x|x是小于9的正整数},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=(  )
A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列命题:
①函数$y=sin(2x+\frac{π}{3})$的单调减区间为$[kπ+\frac{π}{12},kπ+\frac{7π}{12}],k∈Z$;
②函数$y=\sqrt{3}cos2x-sin2x$图象的一个对称中心为$(\frac{π}{6},0)$;
③函数y=cosx的图象可由函数$y=sin(x+\frac{π}{4})$的图象向右平移$\frac{π}{4}$个单位得到;
④若方程$sin(2x+\frac{π}{3})-a=0$在区间$[0,\frac{π}{2}]$上有两个不同的实数解x1,x2,则${x_1}+{x_2}=\frac{π}{6}$.
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知长方体ABCD-A1B1C1D1内接于球O,底面ABCD是正方形,E为AA1的中点,OA⊥平面BDE,则$\frac{{A{A_1}}}{AB}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆方程为x2+y2-2x-9=0,直线方程mx+y+m-2=0,那么直线与圆的位置关系(  )
A.相交B.相离C.相切D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若实数m取值是区间[0,6]上的任意数,则关于x的方程x2-mx+4=0有实数根的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的参数方程:$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α为参数),曲线C上的点M(1,$\frac{\sqrt{2}}{2}$)对应的参数α=$\frac{π}{4}$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,点P的极坐标是($\sqrt{2}$,$\frac{π}{2}$),直线l过点P,且与曲线C交于不同的两点A、B.(1)求曲线C的普通方程;
(2)求|PA|•|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈(1,+∞),2x-1-1>0,则下列叙述正确的是(  )
A.¬p为:?x∈(1,+∞),2x-1-1≤0B.¬p为:?x∈(1,+∞),2x-1-1<0
C.¬p为:?x∈(-∞,1],2x-1-1>0D.¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

同步练习册答案