A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由周期求出ω,由特殊点的坐标求出φ的值,可得函数的f(x)的解析式,从而求得f($\frac{π}{2}$)的值
解答 解:据图分析得$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{T}{2}$,
∴T=π,
又∵T=$\frac{2π}{ω}$,
∴ω=$\frac{2π}{2}$=2,
∴函数f(x)=sin(2x+φ),
∵sin(2×$\frac{5}{12}$π+φ)=1,|φ|<$\frac{π}{2}$)
∴φ=-$\frac{π}{3}$,
∴函数f(x)=sin(2x-$\frac{π}{3}$),
∴f($\frac{π}{2}$)=sin(2×$\frac{π}{2}$-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
故选:D
点评 本题主要考查由函数y=sin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | {5,7} | B. | {2,4} | C. | {2,4,8} | D. | {1,3,5,6,7} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬p为:?x∈(1,+∞),2x-1-1≤0 | B. | ¬p为:?x∈(1,+∞),2x-1-1<0 | ||
C. | ¬p为:?x∈(-∞,1],2x-1-1>0 | D. | ¬p是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com