【题目】抛物线的焦点为,准线为,若为抛物线上第一象限的一动点,过作的垂线交准线于点,交抛物线于两点.
(Ⅰ)求证:直线与抛物线相切;
(Ⅱ)若点满足,求此时点的坐标.
【答案】(I)证明见解析;(Ⅱ).
【解析】
(Ⅰ)设,由此可得直线的斜率,进而得到直线的斜率,由此得到的方程为,令可得点的坐标,于是可得直线的斜率.然后再由导数的几何意义得到在点A处的切线的斜率,比较后可得结论.(Ⅱ)由(Ⅰ)知,直线的方程为,将直线方程与椭圆方程联立消元后得到二次方程,结合根与系数的关系及可求得点A的坐标.
(Ⅰ)由题意得焦点.设,
∴直线的斜率为,
由已知直线斜率存在,且直线的方程为,
令,得,
∴点的坐标为,
∴直线的斜率为.
由得,
∴,即抛物线在点A处的切线的斜率为,
∴直线与抛物线相切.
(Ⅱ)由(Ⅰ)知,直线的方程为,
由 消去整理得,
设,
则.
由题意得直线的斜率为 ,
直线的斜率为,
∵ ,
∴,
∴,
∴ ,
整理得,
解得或.
∵ ,
∴,
又,且,
∴存在,使得.
科目:高中数学 来源: 题型:
【题目】已知,,其中,则下列判断正确的是__________.(写出所有正确结论的序号)
①关于点成中心对称;
②在上单调递增;
③存在,使;
④若有零点,则;
⑤的解集可能为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数),直线的方程为.
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;
(2)在(1)的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com