精英家教网 > 高中数学 > 题目详情
已知数列{an}是由正数组成的等差数列,Sn是其前n项的和,并且a3=5,a4S2=28.
(1)求数列{an}的通项公式;
(2)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
对一切n∈N*均成立的最大实数a;
(3)对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列{bn},设Tn是数列{bn}的前n项和,试问是否存在正整数m,使Tm=2008?若存在求出m的值;若不存在,请说明理由.
分析:(1)设出等差数列的等差为d,根据等差数列的性质,利用a3=5,a4•S2=28求出d及表示出数列{an}的通项公式;
(2)首先分离出参数a,然后记F(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)
,通过 F(n+1)和F(n)商大于1,确定F(n)随n增大而增大,从而得到F(n)的最小值,进而求出结果;
(3)首先求出在数列{bn}中,am及其前面所有项之和,然后求出a10<2008<a11,再求出又a10在数列{bn}中的项数,进而求出m的值.
解答:解:(1)设{an}的公差为d,由题意d>0,且
a1+2d=5
(a1+3d)(2a1+d)=28
(2分)
a1=1,d=2,数列{an}的通项公式为an=2n-1(4分)
(2)由题意a≤
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)
对n∈N*均成立(5分)
F(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)

F(n+1)
F(n)
=
2n+2
(2n+1)(2n+3)
=
2(n+1)
4(n+1)2-1
2(n+1)
2(n+1)
=1

∵F(n)>0,∴F(n+1)>F(n),∴F(n)随n增大而增大(8分)
∴F(n)的最小值为F(1)=
2
3
3

a≤
2
3
3
,即a的最大值为
2
3
3
(9分)
(3)∵an=2n-1
∴在数列{bn}中,am及其前面所有项之和为[1+3+5++(2m-1)]+(2+22++2m-1)=m2+2m-2(11分)
∵102+210-2=1122<2008<112+211-2=2156,即a10<2008<a11(12分)
又a10在数列{bn}中的项数为:10+1+2++28=521(14分)
且2008-1122=886=443×2,
所以存在正整数m=521+443=964使得Sm=2008(16分)
点评:本题考查了等差数列的通项公式以及数列与不等式的综合,综合性强,难度较大.对于不等式恒成立问题通过转化成函数最值问题来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是由正数构成的数列,a1=3,且满足lgan=lgan-1+lgc,其中n是大于1的整数,c是正数.
(1)求数列{an}的通项公式及前n和Sn
(2)求
lim
n→∞
2n-1-an
2n+an+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等差数列,p,q,r为非零自然数.
证明:(1)若p+q=2r,则
1
a
2
p
+
1
a
2
q
2
a
2
r

(2)
1
a
2
1
+
1
a
2
2
+…+
1
a
2
2n-2
+
1
a
2
2n-1
2n-1
a
2
n
(n>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知数列{an}是由正整数组成的数列,a1=4,且满足lgan=lgan-1+lgb,其中b>3,n≥2,且n∈N*,则an=
4bn-1
4bn-1
lim
n→∞
3n-1-an
3n-1+an
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等差数列,Sn是其前n项的和,并且a3=5,a4S2=28.
(I)求数列{an}的通项公式;
(Ⅱ)证明:不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)•
1
2n+1
2
3
3
对一切n∈N均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等比数列,Sn是其前n项和.
(1)当首项a1=2,公比q=
1
2
时,对任意的正整数k都有
Sk+1-c
Sk-c
<2
(0<c<2)成立,求c的取值范围;
(2)判断SnSn+2-
S
2
n+1
(n∈N*)
的符号,并加以证明;
(3)是否存在正常数m及自然数n,使得lg(Sn-m)+lg(Sn+2-m)=2lg(Sn+1-m)成立?若存在,请求出相应的m,n;若不存在,说明理由.

查看答案和解析>>

同步练习册答案