精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(2,0),且过点(0,$\sqrt{2}$).
(1)求此椭圆的方程;
(2)是否存在过点F且斜率为k的直线l与椭圆C交于A,B两点,使得∠AOB为锐角?若存在,求实数k的取值范围;若不存在,请说明理由.

分析 (1)通过联立焦点为F(2,0),且过点(0,$\sqrt{2}$)计算即得结论;
(2)假设存在满足条件的直线l的方程为y=k(x-2),并与椭圆方程联立,利用韦达定理代入解不等式$\overrightarrow{OA}•\overrightarrow{OB}$>0,计算即得结论.

解答 解:(1)依题意,$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}={2}^{2}}\\{0+\frac{2}{{b}^{2}}=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}^{2}=6}\\{{b}^{2}=2}\end{array}\right.$,
∴椭圆的方程为:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(2)结论:存在过点F且斜率为k的直线l与椭圆C交于A,B两点,使得∠AOB为锐角.
理由如下:
假设存在满足条件的直线l的方程为:y=k(x-2),
联立$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y整理得:
(1+3k2)x2-12k2x+12k2-6=0,
设A(x1,y1),B(x2,y2),则x1+x2=$\frac{12{k}^{2}}{1+3{k}^{2}}$,x1x2=$\frac{12{k}^{2}-6}{1+3{k}^{2}}$,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2
=x1x2+k2(x1-2)(x2-2)
=$(1+{k}^{2}){x}_{1}{x}_{2}-2{k}^{2}({x}_{1}+{x}_{2})+4{k}^{2}$
=(1+k2)•$\frac{12{k}^{2}-6}{1+3{k}^{2}}$-2k2•$\frac{12{k}^{2}}{1+3{k}^{2}}$+4k2
=$\frac{10{k}^{2}-6}{1+3{k}^{2}}$
>0,
即10k2>6,解得:k<-$\frac{\sqrt{15}}{5}$或x>$\frac{\sqrt{15}}{5}$.

点评 本题考查直线与圆锥曲线的关系,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设f(x)在x0处可导,试求极限$\underset{lim}{n→∞}$n[f(x0+$\frac{3}{n}$)-f(x0)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=log2(ax2+2x+1)在($\frac{1}{2}$,1)上恒有f(x)>1,则实数a的取值范围为(  )
A.[0,+∞)B.(0,+∞)C.(1,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线的顶点在坐标原点,焦点为F,它的准线方程为y=$\frac{1}{4}$,抛物线上的点A的横坐标为1,B、C是抛物线上异于点A的两点.
(1)若直线AB与直线AC的斜率互为相反数,求直线BC的斜率;
(2)在(1)的条件下,求线段BC的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在R上的函数f(x)满足f(x+2)+f(x)=0,且当x∈[0,2)时,f(x)=3x-1,则f(2015)的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若f(x)+f($\frac{x-1}{x}$)=1+x,求f(x);
(2)若2f(x)+f(1-x)=1+x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{3x+2y≤15}\end{array}\right.$,则z=log2(2x+y)的最大值为log29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.m为何值时,关于x的方程x2-(m+2)x+4=0有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和为3,则实数a的值为2或$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案