精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,已知BC=1,B=2A
(1)求
ACcosA
的值;
(2)求AC的取值范围.
分析:(1)设∠A=θ,可得∠B=2θ,利用正弦定理列出关系式,将已知的值代入,利用二倍角的正弦函数公式化简即可求出所求式子的值;
(2)由三角形为锐角三角形求出θ的范围,由(1)得到AC=2cosθ,利用余弦函数的图象与性质即可求出AC的范围.
解答:解:(1)设∠A=θ,可得∠B=2θ,
由正弦定理得
AC
sin2θ
=
BC
sinθ
,即
AC
2sinθcosθ
=
1
sinθ

AC
cosA
=
AC
cosθ
=2;
(2)∵△ABC为锐角三角形,∴0<2θ<90°,
∴0<θ<45°,
又0<180-3θ<90°,
∴30°<θ<60°,
2
2
<cosθ<
3
2

则AC=2cosθ∈(
2
3
).
点评:此题考查了正弦定理,二倍角的正弦函数公式,以及余弦函数的图象与性质,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且满足2sinBcosB=-
3
cos2B

(1)求B的大小;
(2)如果b=
7
a=2,求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知a、b、c分别是三内角A、B、C所对应的边长,且b=2asinB.
(1)求角A的大小;       
(2)若b=1,且△ABC的面积为
3
3
4
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且满足2sinB(2cos2
B
2
-1)=-
3
cos2B.
(1)求B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知cosA=
1
2
,BC=
3
,记△ABC的周长为f(B).
(1)求函数y=f(B)的解析式和定义域,并化简其解析式;
(2)若f(B)=
3
+
6
,求f(B-
π
2
)
的值.

查看答案和解析>>

同步练习册答案