精英家教网 > 高中数学 > 题目详情

【题目】设△ABC的内角A,B,C所对的边分别是a,b,c,且cosC+=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

【答案】解:(Ⅰ)由已知得cosC+=1.
即sinAcosC+sinC=sinB,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
sinC=cosAsinC.
∵sinC≠0,
∴cosA=
又∵A∈(0,π),∴A=
(Ⅱ)由正弦定理得b==sinB,c=sinC,
∴l=a+b+c=1+sinB+sinC=1+[sinB+sin(A+B)]
=1+2sin(B+).
∵A=
∴B∈,B+
∴sin(B+)∈(,1].
故△ABC的周长l的取值范围是(2,3].
【解析】(I)利用正弦定理、和差化积即可得出;
(II)利用正弦定理、和差化积、三角函数的单调性即可得出.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若存在唯一的零点,且,则的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的底面边长为3,侧棱DCB延长线上一点,且

求二面角的正切值;

求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法错误的是(  )
A.若“p∨q”为假命题,则p,q均为假命题
B.“x=1”是“x≥1”的充分不必要条件
C.“sinx=”的必要不充分条件是“x=
D.若命题p:?x0∈R,x02≥0,则命题¬p:?x∈R,x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),当x∈[0,1]时,f(x)=x,那么在区间[﹣1,3]内,关于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4个不同的根,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛MVP(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.

比分

易建联技术统计

投篮命中

罚球命中

全场得分

真实得分率

中国91﹣42新加坡

3/7

6/7

12

59.52%

中国76﹣73韩国

7/13

6/8

20

60.53%

中国84﹣67约旦

12/20

2/5

26

58.56%

中国75﹣62哈萨克期坦

5/7

5/5

15

81.52%

中国90﹣72黎巴嫩

7/11

5/5

19

71.97%

中国85﹣69卡塔尔

4/10

4/4

13

55.27%

中国104﹣58印度

8/12

5/5

21

73.94%

中国70﹣57伊朗

5/10

2/4

13

55.27%

中国78﹣67菲律宾

4/14

3/6

11

33.05%

注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真实得分率)是衡量球员进攻的效率,其计算公式为:
TS%=.全场得分/2x(投篮出手次数+0.44x罚球出手次数)
(Ⅰ)从上述9场比赛中随机选择一场,求易建联在该场比赛中TS%超过50%的概率;
(Ⅱ)从上述9场比赛中随机选择两场,求易建联在这两场比赛中TS%至少有一场超过60%的概率;
(Ⅲ)用x来表示易建联某场的得分,用y来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断y与x之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足,则的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数{an}满a1=0,an+1=an+2n,那a2016的值是(  )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二学生小严利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):

女性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

5

10

15

男性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

2

3

10

2

(1)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;

(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”

女性

男性

总计

网购达人

非网购达人

总计

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

,其中

查看答案和解析>>

同步练习册答案