精英家教网 > 高中数学 > 题目详情

已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是


  1. A.
    (-∞,-1)∪(-1,0)
  2. B.
    (-∞,-1)∪(0,+∞)
  3. C.
    (-1,0)∪(0,+∞)
  4. D.
    a∈R且a≠0,a≠-1
B
分析:先将条件“对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线”转化成f'(x)=-1无解,然后求出2sinxcosx+2a=-1有解时a的范围,最后求出补集即可求出所求.
解答:∵对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线
∴曲线y=f(x)的切线的斜率不可能为-1
即f'(x)=2sinxcosx+2a=-1无解
∵0≤sin2x+1=-2a≤2
∴-1≤a≤0时2sinxcosx+2a=-1有解
∴对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是a<-1或a>0
故选B.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及转化的数学思想,解题的关键是对条件“对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线”的理解,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是
a<-1或a>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是  

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省南阳一中高三(上)12月月考数学试卷(理科)(解析版) 题型:选择题

已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是( )
A.(-∞,-1)∪(-1,0)
B.(-∞,-1)∪(0,+∞)
C.(-1,0)∪(0,+∞)
D.a∈R且a≠0,a≠-1

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省宁波市余姚中学高三(上)第二次质量检测数学试卷(理科)(解析版) 题型:填空题

已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是   

查看答案和解析>>

同步练习册答案