£¨2012•¶«Ý¸ÊÐÄ£Ä⣩һ¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖÐÕýÊÓͼºÍ²àÊÓͼÊÇÑü³¤Îª6µÄÁ½¸öÈ«µÈµÄµÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨¢ñ£©Çë»­³ö¸Ã¼¸ºÎÌåµÄÖ±¹Ûͼ£¬²¢Çó³öËüµÄÌå»ý£»
£¨¢ò£©ÓöàÉÙ¸öÕâÑùµÄ¼¸ºÎÌå¿ÉÒÔÆ´³ÉÒ»¸öÀⳤΪ6µÄÕý·½ÌåABCD-A1B1C1D1£¿ÊÔ»­³öͼÐΣ»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÇéÐÎÏ£¬ÉèÕý·½ÌåABCD-A1B1C1D1µÄÀâCC1µÄÖеãΪE£¬ÇóƽÃæAB1EÓëƽÃæABCDËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®
·ÖÎö£º£¨¢ñ£©Ö±½Ó»­³ö¸Ã¼¸ºÎÌåµÄÖ±¹ÛͼÈçͼ1Ëùʾ£¬È»ºóÇó³öËùÇóÌå»ý£®
£¨¢ò£©½áºÏÌå»ý¹Øϵ£¬ËµÃ÷ÓÃ3¸öÕâÑùµÄËÄÀâ׶¿ÉÒÔÆ´³ÉÒ»¸öÀⳤΪ6µÄÕý·½Ì壬
ÆäÆ´·¨Èçͼ2Ëùʾ£®Í¨¹ýVC1-ABCD=VC1-ABB1A1=VC1-AA1D1D  ¹ÊËùƴͼÐγÉÁ¢£®
£¨¢ó£©ÉèB1E£¬BCµÄÑÓ³¤Ïß½»ÓÚµãG£¬Á¬½ÓGA£¬ÔÚµ×ÃæABCÄÚ×÷BH¡ÍAG£¬´¹×ãΪH£¬Á¬½ÓHB1£¬ËµÃ÷¡ÏB1HBΪƽÃæAB1EÓëƽÃæABCËù³É¶þÃæ½Ç»òÆä²¹½ÇµÄƽÃæ½Ç£®ÔÚRt¡÷ABGÖУ¬Çó½âƽÃæAB1EÓëƽÃæABCËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®
½â´ð£º½â£º£¨¢ñ£©¸Ã¼¸ºÎÌåµÄÖ±¹ÛͼÈçͼ1Ëùʾ£¬ËüÊÇÓÐÒ»Ìõ
²àÀâ´¹Ö±ÓÚµ×ÃæµÄËÄÀâ׶£®ÆäÖе×ÃæABCDÊDZ߳¤Îª6µÄ
Õý·½ÐΣ¬¸ßΪCC1=6£¬¹ÊËùÇóÌå»ýÊÇV=
1
3
¡Á62¡Á6=72
  ¡­£¨4·Ö£©
£¨¢ò£©ÒÀÌâÒ⣬Õý·½ÌåµÄÌå»ýÊÇÔ­ËÄÀâ׶Ìå»ýµÄ3±¶£¬
¹ÊÓÃ3¸öÕâÑùµÄËÄÀâ׶¿ÉÒÔÆ´³ÉÒ»¸öÀⳤΪ6µÄÕý·½Ì壬
ÆäÆ´·¨Èçͼ2Ëùʾ£®
Ö¤Ã÷£º¡ßÃæABCD¡¢ÃæABB1A1¡¢ÃæAA1D1DΪȫµÈµÄ
Õý·½ÐΣ¬ÓÚÊÇVC1-ABCD=VC1-ABB1A1=VC1-AA1D1D  ¹ÊËùƴͼÐγÉÁ¢£®¡­£¨4·Ö£©
£¨¢ó£©ÉèB1E£¬BCµÄÑÓ³¤Ïß½»ÓÚµãG£¬
Á¬½ÓGA£¬ÔÚµ×ÃæABCÄÚ×÷BH¡ÍAG£¬´¹×ãΪH£¬
Á¬½ÓHB1£¬ÔòB1H¡ÍAG£¬¹Ê¡ÏB1HBΪƽÃæAB1EÓë
ƽÃæABCËù³É¶þÃæ½Ç»òÆä²¹½ÇµÄƽÃæ½Ç£®
ÔÚRt¡÷ABGÖУ¬AG=
180
£¬
ÔòBH=
6¡Á12
180
=
12
5
£¬
B1H=
BH2+BB12
=
18
5
£¬
cos¡ÏB1HB=
HB
HB1
=
2
3
£¬
¹ÊƽÃæAB1EÓëƽÃæABCËù³É¶þÃæ½ÇµÄÓàÏÒֵΪ
2
3
£®¡­£¨4·Ö£©
µãÆÀ£º±¾Ì⿼²éÈýÊÓͼÓëÖ±¹ÛͼµÄ¹Øϵ£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦£¬Æ½ÃæÓëƽÃæËù³É½ÇµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«Ý¸ÊÐÄ£Ä⣩ÒÑÖªº¯Êýf£¨x£©=2sinxcosx+cos2x£¨x¡ÊR£©£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍ×î´óÖµ£»
£¨2£©Èô¦ÈΪÈñ½Ç£¬ÇÒf(¦È+
¦Ð
8
)=
2
3
£¬Çótan2¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«Ý¸ÊÐÄ£Ä⣩£¨ax-
1
x
£©8µÄÕ¹¿ªÊ½ÖÐx2µÄϵÊýΪ70£¬ÔòʵÊýaµÄֵΪ
1»ò-1
1»ò-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«Ý¸ÊÐÄ£Ä⣩É躯Êýf£¨x£©=logax£¨aΪ³£ÊýÇÒa£¾0£¬a¡Ù1£©£¬ÒÑÖªÊýÁÐf£¨x1£©£¬f£¨x2£©£¬¡­£¬f£¨xn£©£¬¡­Êǹ«²îΪ2µÄµÈ²îÊýÁУ¬ÇÒx1=a2£®
£¨¢ñ£©ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©µ±a=
1
2
ʱ£¬ÇóÖ¤£ºx1+x2+¡­+xn£¼
1
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«Ý¸ÊÐÄ£Ä⣩ÒÑÖªº¯Êýf£¨x£©=x2-ax£¨a¡Ù0£©£¬g£¨x£©=lnx£¬f£¨x£©Í¼ÏóÓëxÖáÒìÓÚÔ­µãµÄ½»µãM´¦µÄÇÐÏßΪl1£¬g£¨x-1£©ÓëxÖáµÄ½»µãN´¦µÄÇÐÏßΪl2£¬²¢ÇÒl1Óël2ƽÐУ®
£¨1£©Çóf£¨2£©µÄÖµ£»
£¨2£©ÒÑ֪ʵÊýt¡ÊR£¬Çóº¯Êýy=f[xg£¨x£©+t]£¬x¡Ê[1£¬e]µÄ×îСֵ£»
£¨3£©ÁîF£¨x£©=g£¨x£©+g¡ä£¨x£©£¬¸ø¶¨x1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1£¼x2£¬¶ÔÓÚÁ½¸ö´óÓÚ1µÄÕýÊý¦Á£¬¦Â£¬´æÔÚʵÊýmÂú×㣺¦Á=mx1+£¨1-m£©x2£¬¦Â=£¨1-m£©x1+mx2£¬²¢ÇÒʹµÃ²»µÈʽ|F£¨¦Á£©-F£¨¦Â£©|£¼|F£¨x1£©-F£¨x2£©|ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸